Large scale computing infrastructure at DESY Interdisciplinary Data Analysish Facility (IDAF)

Christian Voss, <u>Yves Kemp</u>, for DESY IT PunchLunch 2025-01-15 DESY

With slide contributions from DESY and XFEL people

DESY research divisions ... In a nutshell

Accelerators »

Running / Operating:

- Planning:
- Petra IV General Accelerator R&D

Photon science »

Petra III, FLASH, EXFEL, - Petra III, FLASH, XFEL, ... CFEL, CSSB, EMBL, HZG

Particle physics »

- LHC, HL-LHC
- Belle II
- ILC, ALPS,
- Theory division

DESY research divisions ... IT involvment in scientific computing

... An incomplete view

- Storage operational data
- Simulation & computational infrastructure for R&D
- Support

Photon science »

- Online DAQ
- Offline storage & analysis infrastructure
- Simulation & computational infrastructure for R&D
- Support

Particle physics »

- Global and national tasks within LHC and BELLE II
- Simulation & computiational
 Infrastructure for ILC and detector
 R&D
- Support

Now, designing the compute and storage infrastructures

Computational requirements: Job size vs IO needs

Very very coarse

Computational requirements

Very very coarse

per process Small Ingest for any of the other ones

Storing data

HPC system with strengthened Storage systems

Photon Science Simulation & Analysis

Classical HTC system

Particle Physics Simulation & Analysis **Classical HPC systems**

Accelerator R&D Simulation

Small

Job size (#cores/job, RAM/job)

Large

Computational requirements

Very very coarse

10 per process

Ingest for any of the other ones
Storing data

Grid & NAF cluster
+dCache storage
(+NFS storage)
Classical HTC system
Particle Physics

Simulation & Analysis

HPC system with strengthened Storage systems

Photon Science Simulation & Analysis

Maxwell HPC system + GPFS storage Using InfiniBand

Classical HPC systems

Accelerator R&D Simulation

Small

Job size (#cores/job, RAM/job)

Large

Small

Computational requirements

Very very coarse

Ingest for any of the other ones
Storing data

Grid & NAF cluster
+dCache storage
(+NFS storage)
Classical HTC system
Particle Physics
Simulation & Analysis

HPC system with strengthened Storage systems

Photon Science Simulation & Analysis

Maxwell HPC system + GPFS storage Using InfiniBand

Classical HPC systems

Accelerator R&D Simulation

Small

Job size (#cores/job, RAM/job)

Large

The IDAF in a nutshell

 CPU nodes
 ~1500

 CPU cores
 ~60.000

 GPUs
 ~400

 Node IO
 10 Gbit/s (Ethernet)— 100 Gbit/s (InfiniBand)

 WAN bandwidth
 2x 50 Gbit/s

Internal traffic up to 250 Gbit/s dCache IO
dCache storage ~150 Pbyte @ 2 Giga-files

~60 Pbyte @ 1,5 Giga-files

The IDAF is about people and experiments

Accelerator Data

Accelerator Development
 Data

- HPC simulations
- Test-beam data

Detector and Accelerator R&D

... and where they come from

logins during two weeks in October 2023

Only NAF & Maxwell logins are accounted for (no Grid submission)

... mostly from academia (universities and institues)

... some commercial users

... who can acces it and why?

User access:

- Grid communities
- scientists from PETRA III, FLASH, EuXFEL
- Helmholtz Matter users

The IDAF is about services

Interactive access and compute

Federated access to compute & data

Large-scale compute and workflows

Integration with DAQ

Data storage & management

Metadata management

Software and containers

Documentation, support, training

Code management and CI/CD

... and the IDAF is also about infrastructure

Data Storage: Essential for Science@DESY

Data Management

Today: Most Scientific Endeavours Produce Large Amounts of Data

Computing@DESY: Storage of data for all departments and communities

(Astro-)Particle Physics

- Store and archive raw data
- Store and archive simulated data
- Store pre-processed data for
 - Experiment specific workflows
 - Dedicated user analyses

Accelerators and Detectors

- Store and archive simulated data
- Store and archive test-beam data
- Store and archive telemetry data

Photon Science

- Store simulated data
- Store and archive raw data
- Store pre-processed data for analyses

- Data as central element for most research.
- Make data the central hub and trigger for scientific workflows

The dCache Storage System

Distributed Scalable Mass Storage System

- Central element in overall storage strategy
- Collaborative development under open source licence by
 - DESY (leading laboratory)
 - Fermilab
 - Nordic E-Infrastructure Collaboration (ex. NDGF)

Particle Physics

- In production at 9 of 13 WLCG Tier-1 centres
- In use at over 60 Tier-2 sites world wide
- 75% of all remote LHC data stored on dCache
- In addition: Tevatron and HERA data

Astronomy & Radio-Astronomy

- LOFAR Long Term Archive (~40 PB) & CTA
- SkySurvey

Photon Science

European XFEL, CFEL and others for archival

Accelerator and Detectors

FLASH, LINAC telemetry

dCache: Architecture

User Access to dCache Responsible to Store Machine Data

- dCache instances for Photon Science/Machine, European XFEL, ATLAS, CMS, Belle/ILC/DPHEP, Sync&Share
- Similar layout: three head-nodes, doors for requested protocols and pools nodes
- Scale-out horizontally: 10 pool nodes for Sync&share and 200 for European XFEL with 100 more ordered
- Scale-out horizontally: client always to connect to pools for transfer, no data access through doors

dCache: Capacity of Local DESY Instances

Available and Used dCache Storage

- Steady increase for HEP since inception of dCache
- Exponential increase for Photon science since start of European XFEL
- HEP dCache is connected to the WLCG
- Transfers all over the world
- Read access to HEP dCache (excluding DESY-HH):

Complementing storage for DAQ and project use cases

Cooperation with IBM on GPFS / Spectrum Scale

- dCache storage is optimized for throughput
- Several applications need different profiles:
- Photon science data taking:
 - Lots of small files, high bandwidth
 - Integrated (e.g.) into ASAP::O
- End user analysis
 - Single file performance, many small files, meta data heavy

→ Complementing using (previously: GPFS)

- ~17 PB (Petra-III), ~64 PB (E-XFEL), ~5 PB (project space)
- Collaboration with IBM

Challenges: Accessing Data

Users Prefer to Use POSIX — IDAF Needs to Adapt to that Fact

Continued trend to access data 'directly'

```
def read_frame_from_file(frame_id: int, data_file: str):
    start_time = time.time()
    with h5py.File(data_file, 'r') as h5in:
        tmp_arr = h5in['/PATH:xtdf/image/data'][frame_id]
    read_time = time.time() - start_time
    return read_time
```


- Usually only option for photon science and accelerator R&D (and commercial software)
- Trend includes HEP despite remote read capabilities
- Poses the challenge of having uniform name-space across the IDAF

[vossc@max-display008] ~ \$ md5sum /gpfs/dust/belle2/user/vossc/stage-rest-api.out 0108f37dbbb38103bba6d836f356d7b7 /gpfs/dust/belle2/user/vossc/stage-rest-api.out

[vossc@naf-belle12] ~ \$ md5sum /nfs/dust/belle2/user/vossc/stage-rest-api.out 0108f37dbbb38103bba6d836f356d7b7 /nfs/dust/belle2/user/vossc/stage-rest-api.out

- I would need to change my analysis depending on the cluster I'm on
- → SOLVED now: in heroic act, we unified the user/project areas to one single namespace

Data Access CMS May 2023

Analysis & simulation infrastructure at DESY

Basic setup at DESY

The Setup for particle physics

The Setup for photon science & accelerator R&D

Slide stolen from Maxence Thévenet

Architecture of a supercomputer

Number-crunching compute nodes + interconnect + file system

Compute node

Homogeneous within a partition of a supercomputer Accelerated computing (Graphics Processing Unit)

More on that later Maxwell: - Homogeneous within partition: We try...

- GPUs: Yes!

Interconnect

Invisible to the user (send a message)

No all-to-all connections

Multiple topologies (Fat Tree, Torus, Dragonfly)
InfiniBand is a widespread communication standard

Parallel file system (I/O) Maxwell: InfiniBand based storage:

GPFS, Lustre - GPFS for \$HOME, P-3 and XFEL

BeeGFS as "project space"

Software

Open-source, Linux-based Maxwell: Slurm
Job scheduler: Slurm, LSF Supporting MPI

Launcher (resource allocation, placement): mpirun, srun

Many other applications available, incl.

Maxwell: Using InfiniBand in a

blocking fat tree topology

commercial ones

Comparing Maxwell HPC & GRID/NAF HTC systems

Feature	Maxwell	GRID/NAF
Size	~950 nodes / 48k cores / 560 TB RAM ~200 nodes with GPU	~ 600 nodes / ~30k cores / ~100 TB RAM
Network	InfiniBand for fast data & IPC, 10 GE Ethernet	1 GE - 10 GE Ethernet
Storage	Access to GPFS data (IB), dCache (NFS, Ethernet).	dCache (NFS, Ethernet), GPFS (NFS, Ethernet)
Batch strategy	Whole/Multi-node-scheduling. Integration of private resources possible, with prioritized access.	Per-core-scheduling, no multi-node. Centrally procured resources. Fairshare on group basis.
Product	SLURM	HTCondor

GPU computing & Machine Learning

- General GPU computing established in HPC systems
 - ... so in Maxwell: ~200 nodes equipped with GPUs
 - Different generations, different setups: From one GPU/Server to four GPU/Server
- Maxwell HPC cluster natural candidate for hosting GPU computing
 - Users have applications profiting from GPUs
 - GPUs benefit from "HPC-like" environment

- Machine Learning
 - Boosted by the usage of GPUs for training (and inference)
 - Benefits heavily from fast access to (large amounts of) data, and high-RAM machines
 - Maxwell is natural environment.

- Future of GPU computing & Machine Learning
 - We see an increase in demand for "multi-GPU nodes" (~4 GPU/node)
 - Expensive, few nodes, challenging from scheduling point of view
 - Look for alternatives to NVIDIA. Have some examples in the lab. Dependency from CUDA challenging

Making batch more user-friendly – and maybe overcome it?

- Select a good scheduler ... With active developer
- Containers healing the OS & software incompatibilities
 - Started on Maxwell in 2016, using Docker technology
- Interactivity & access: Jupyter
 - Integrate interactivity into batch
 - "Tragedy of the commons"
- git based workflows & CI/CD
- And ever and ever again, do training, taking by the hand, ...

Jupyter: Interactive & easy remote access

Jupyter notebooks and Maxwell and NAF

What are Jupyter Notebooks? Data analysis and simulation in your browser

- Python based interpreter for Python, Matlab, ...
- Access via web-browser through portal
- Computation itself happens on Maxwell or NAF:
 Integration with SLURM / HTCondor scheduler

Interactive analysis notebooks on DESY batch resources
Johannes Reppin et al. (2021), CSBS/Springer

DESY. | IDAF @DESY | Christian Voss, Yves Kemp, PunchLunch 2025-01-16

Maxwell Jupyter Job Options

A view to particle physics analysis

HEP communitites at DESY

Community / Experiments	Compute activities
EXPERIMENT CMS INCOME.	Grid Tier-2, German NAF users
Belle II	Compute & Storage, Management services, Collaborative tools,
CALICO	Compute & Storage, Management services
ZEUS hermes	Compute & Storage, Management services

The Setup for particle physics

Analysis Facility Evolution

IDAF integrated into global experiments and global workflows Yet, the final steps of the analysis happen locally, at one place: The Analysis Facility

How should an Analysis

Facility look like in the future?

Discussions and proposals

going on at different levels:

e.g. FIDIUM, HSF, WLCG

Some ideas, e.g.

- Federate users, access and portals
- Make federated data available

New tools, e.g.

- Gitlab based pipelines
- Columnar analysis

HEP and Batch?

- Batch based computing Ansatz long established in HEP
- Nevertheless: Alternatives are being investigated:
- NAF: Augment Grid with interactive resources
- Jupyter as new access method is being rolled out successively
 - Investigation on Jupyter resource scaling
 - "Tragedy of the commons"
- Investigating DASK & Spark as non-batch compute organization
- gitlab / CI/CD workflows ... connection to batch?
- Batch ↔ Cloud integration ?

What is an Analysis Facility?

- Basic concept of the IDAF are:
 - Data locality
 - Access services and compute integrated with storage
 - Present a holistic service to the analyst
- With the advent of machine learning and new compute technologies and storage concepts:
 - Does data locality still hold?
 - Is current storage integration still OK?
 - Do people need an integrated service, or rather flexible infrastructure?

Discussions going on at different levels

- Sometimes user driven ... who drives?
 - 10% pioneer users?
 - 10% special requirements users?
 - 80% normal users?
- Research at facilities needed:
 - E.g. PhD students / young postdocs that spend some time doing their analysis in a novel way – in close interaction with IDAF experts
 - Participation in ERUM data call on

THE HEP SOFTWARE FOUNDATION (HSF)

HSF-TN-2024-01 April 2024

Analysis Facilities White Paper

Analysis Facilities Workshop

- MIAPbP (Garching)

Columnar Analysis

- Orthogonal ansatz to compute
- Optimal with data stored in-memory
- Poses radically new challenges
- IDAF has pioneered columnar analysis on small scale
- Currently seeing that users are taking up this techniques
 - > 50% in some groups
- Need further R&D to offer CA reliably and performing, at-scale, experiment-generic, in a multi-user environment

Future: Following Changes in Communities

New Tools and Workflows Bring Communities Closer Together

Revisit diagram from beginning

Summary & Outlook

Interdisciplinary

DESY IT already serves all branches of Science at DESY

- Infrastructures are there, and working well ...

Data

Science produces large amount of data

Detectors, Acclerators and Simulation

Analysis

Main goal is to provide best possible analysis infrastructure for all our users.

- Large scale offline, and fast online ... overcome online/offline barrier for analysis

Facility

Not an institute cluster: Facility for internal and external users

Full service for entier data lifecyle