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Phase-II Upgrade of ATLAS and CMS 

• The Phase II upgrade is planned during the Long Shutdown 3: 2026-2030 

• The following Runs 4 and 5 will be in operation: 2030 to 2041 

• Peak luminosity of 7.5x1034 cm-2s-1 

LHC / HL-LHC Plan (last 

update January 2025), 

https://hilumilhc.web.cern.ch/

content/hl-lhc-project Upgrade program of the LHC accelerator complex 

Phase-II 
upgrade 



20 Mar 2025 

3 

• The instantaneous luminosity of 

the LHC in Run 4 is significantly 

increased  upgrade of the 

ATLAS trigger system is 

necessary 

• Phase-II Level-0 Trigger System 

• Performs real time event selection 

• Reduces the event rate: 40 MHz 

 1 MHz (100 kHz in Run 3) 

• Staying below the maximum 

readout rate of the ATLAS 

detector 

• Overall system latency budget 10 

µs (2.5 µs in Run 3) 

ATLAS Phase-II Level-0 Trigger system 

Viacheslav Filimonov (JGU Mainz) 

ATLAS Collaboration, "Technical Design 

Report for the Phase II Upgrade of the 

ATLAS TDAQ System", CERN-LHCC-

2017-020 

A block diagram of the ATLAS Level-0 trigger system after the 
Phase-II upgrade 
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• Processes LAr and Tile 

calorimeter data to build Trigger 

Objects (TOBs) 

• Includes Phase-I legacy 

hardware: e/j/g FEXes 

• Adds new fFEX for forward EM, 

jets and taus 

 

• All systems in ATCA form factor 

• High end FPGAs and optical 

modules 

• Occupies 5 ATCA shelves 

 

L0Calo 

Viacheslav Filimonov (JGU Mainz) 

ATLAS Collaboration, "Technical Design 

Report for the Phase II Upgrade of the 

ATLAS TDAQ System", CERN-LHCC-

2017-020 

A block diagram of the ATLAS Level-0 trigger system after the 
Phase-II upgrade 
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• The fFEX system consists of four ATCA 

modules 

• Each hosting two processor FPGAs: AMD 

Ultrascale+ 13P 

• High-speed optical transceivers: Samtec 

FireFly 

• Support data transmission at speeds up to 

25.8 Gb/s per link 

• Real time data path and readout 

• Zynq based control mezzanine 

• Configuration, monitoring, slow control 

• FPGA power mezzanine modules support 

rails of up to 100A 

Typical hardware example: fFEX 

Viacheslav Filimonov (JGU Mainz) 

fFEXv1 prototype module hardware overview 
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• High-speed PCB design routing techniques 
• High-speed differential pairs adhere to strict physical and 

spacing constraints 

• Staying within the phase tolerance limit: phase tuning 

performed 

• Achieving a required differential impedance: in-pair 

spacing and trace width controlled 

• Minimizing the crosstalk: spacing sufficiently larger than 

the in-pair spacing used across all pairs 

fFEX hardware: Signal Integrity 

Viacheslav Filimonov (JGU Mainz) 

Bump style arc phase tuned high-speed 

differential pair routed between the optical 

module and the FPGA 

Minimum kept spacing (shown as 

the air gap value) between the 

neighboring high-speed differential 

pairs. 

The in-pair spacing (shown as the air gap value) 

between the traces of a single high-speed 

differential pair. 
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• The high speed stack-up design 
• Minimizing the crosstalk: signal planes shielded by the ground planes 

• Avoiding stubs on the signal lines: high-speed signals occupy the top and 

bottom inner layers and use microvias 

• Good dielectric constant, ultra-low dielectric loss for high frequencies, 

highly heat resistant PCB material (EMC EM-890K-89BK) used 

fFEX hardware: Signal Integrity 

Viacheslav Filimonov (JGU Mainz) 

fFEX stack-up 

• High-speed PCB design 

routing techniques 
• Ground vias in the vicinity of 

the point where the high-

speed track changes its layer 

from the inner to the outer (or 

vice versa) in the interface 

areas 

Ground vias surround the point where a high-

speed differential pair changes its layer from the 

inner to the outer 
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• L0Muon 

• Forms muon candidates in the 

barrel and endcap 

• Uses new Processors for the 

NSW and MDT 

• Occupies 15 ATCA shelves 

 

• Central Trigger 

• Trigger information from barrel 

and endcap is merged in the 

MUCTPI before being sent to the 

Global Trigger and CTP 

• Final L0 decision is made in the 

CTP based on a trigger menu 

 

L0Muon and Central Trigger 

Viacheslav Filimonov (JGU Mainz) 

ATLAS Collaboration, "Technical Design 

Report for the Phase II Upgrade of the 

ATLAS TDAQ System", CERN-LHCC-

2017-020 

A block diagram of the ATLAS Level-0 trigger system after the 
Phase-II upgrade 
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Global Trigger system: Functionality 

Viacheslav Filimonov (JGU Mainz) 

A block diagram of the ATLAS Level-0 trigger system after 
the Phase-II upgrade 

ATLAS Collaboration, 

"Technical Design Report for 

the Phase II Upgrade of the 

ATLAS TDAQ System", 

CERN-LHCC-2017-020 

• As part of the Phase-II Level-0 Trigger 

System, the Global Trigger replaces 

the Phase-I Topological Processor 

• The  Global Trigger will absorb the 

functions of the Phase-I Topological 

Processor and significantly extend 

them 

• Uses full-granularity calorimeter 

cells to perform offline-like 

algorithms 

• Identifies topological signatures 

• Processes the trigger information 

from the Run 3 hardware systems 

• Transmits the processed trigger 

information to CTP for final decision 
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Global Trigger system: Implementation 

• Will provide a synchronous interface to the rest of ATLAS detector 

• Time-multiplexed system 

concentrates data of full 

event into a single 

processor 

• Composed of 3 main layers 

• Multiplexing (MUX) layer 

• Global Event Processor 

    (GEP) layer 

• Demultiplexing Global-to-

Central Trigger 

    Processor (CTP) Interface 

Viacheslav Filimonov (JGU Mainz) 

ATLAS Collaboration, "Technical Design Report for the Phase II Upgrade of the 

ATLAS TDAQ System", CERN-LHCC-2017-020 
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Global Trigger system: Time multiplexing 

• 48 MUX nodes receive real time data from L0Calo, Calorimeter and 

MuCTPi every BC and transmit a full event to a single GEP node every BC 

• As a result, the latency budget for each event processor is 1.2 µs 

Viacheslav Filimonov (JGU Mainz) 

Global Trigger Community, "ATLAS TDAQ Phase-II 

Upgrade: Hardware Specifications for the Global 

Trigger", ATL-COM-DAQ-2021-099 
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Firmware evolution example 

Viacheslav Filimonov (JGU Mainz) 

• Abundance of algorithms within the GEP node in order to process the full 

event data 

• Even though each algorithm block in Phase-II has significantly higher 

latency budget, it also has significant resource limitations 

Jeff Eastlack 
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• “Select” algorithms select all Trigger 

Objects (TOBs) passing configurable 

parameter-based threshold 

• “Sort” algorithms output a list of the 

leading TOBs with the highest 

Transverse Energy (ET), that pass 

the thresholds, and sort them by ET 

• “Decision” algorithms perform 

calculations for one or more lists of 

TOBs, including angular differences, 

invariant masses, large jet 

reclustering, and missing transverse 

energy 

 

Recap: Hypothesis (Topo) firmware in Phase-I 

L1Topo “Sort/Select” and “Decision” algorithms structure 

Viacheslav Filimonov (JGU Mainz) 

* 1 BC ~ 25 ns 

BC (Bunch Crossing) – collision between the particle beams 

* 

• LHC Bunch Crossing synchronous firmware – new event data every 25 ns 

J. Damp, “Search for Dijet Resonances with the Level-1 Topological Processor at ATLAS”, 

PhD thesis: Johannes Gutenberg-Universität Mainz, 2020 
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Recap: Hypothesis (Topo) firmware in Phase-I 

Viacheslav Filimonov (JGU Mainz) 

• 1 BC (25 ns) – very tight latency budget for Decision algorithms  full 

parallelization required 

• High resource usage as a consequence: 2.5M LUTs across 6 FPGAs 

E. Meuser, “The ATLAS Level-1 

Topological Processor”, 

https://cds.cern.ch/record/2869237 

Algorithm 

Example 
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Hypothesis firmware: Phase-II 

Viacheslav Filimonov (JGU Mainz) 

• Main strategy – fitting within the tight resource budget at a cost of higher 

latency 

• Instead of processing all combinations in parallel in a single clock tick, 

processing them sequentially 

• Significant resource reduction 

Phase-II serial implementation 

Phase-I parallel implementation 

Adapted from: E. Meuser, “The ATLAS Level-1 Topological Processor”, https://cds.cern.ch/record/2869237 

Algorithm 

Example 

31’732 LUTs 

↓ 

636 LUTs 
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• The Global Common Module (GCM) - the 

main hardware element of the global 

trigger 

• Compose every layer of the Global Trigger 

 

• Standard ATCA form factor 

• Two AMD Versal Premium XCVP1802 

devices (MUX + GEP / gCTPi) 

• 20 Samtec FireFly optical modules 

• Real time data path 

• Readout 

 

Global Trigger system: GCM Hardware 

Viacheslav Filimonov (JGU Mainz) 

GCMv3 prototype module hardware overview 
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• Upgrade of the CMS trigger 

system is necessary as well due 

to the significant increase of the 

instantaneous luminosity of the 

LHC in Run 4 

 

• Phase-II Level-1 Trigger System 

• Performs real time event selection 

• Reduces the event rate: 40 MHz 

 750 kHz (1 MHz in ATLAS) 

• Overall system latency budget 

12.5 µs (10 µs in ATLAS) 

CMS Phase-II Level-1 Trigger system 

Viacheslav Filimonov (JGU Mainz) 

A block diagram of the CMS Level-1 trigger system after the 
Phase-II upgrade 

The Phase-2 Upgrade of the CMS Level-1 Trigger. (2020). 

[Techreport]. 
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• The muon trigger processes data 

from both the muon system and 

tracking system to create the 

muon trigger objects 

 

• The calorimeter trigger processes 

information from the 

electromagnetic and hadronic 

calorimeters and builds 

calorimeter trigger objects 

• Includes Regional and Global 

Calorimeter Triggers 

 

Calorimeter and Muon triggers 

Viacheslav Filimonov (JGU Mainz) 

A block diagram of the CMS Level-1 trigger system after the 
Phase-II upgrade 

The Phase-2 Upgrade of the CMS Level-1 Trigger. (2020). 

[Techreport]. 
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• Hardware-based system 

• Uses dedicated pT modules in the 

outer tracker to form correlated hit 

pairs (stubs) that are rapidly 

processed in the track finder 

modules 

• The GTT processes data from the 

track finder modules to build high-

level track objects 

 

• ATLAS: Track reconstruction is 

integrated into the Event Filter 

• Uses software-based and 

heterogeneous computing rather 

than a dedicated hardware system 

Track Trigger 

Viacheslav Filimonov (JGU Mainz) 

A block diagram of the CMS Level-1 trigger system after the 
Phase-II upgrade 

The Phase-2 Upgrade of the CMS Level-1 Trigger. (2020). 

[Techreport]. 
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• The correlator trigger aggregates 

all the data processed in the 

calorimeter, muon, and global 

track triggers to build more 

accurate trigger objects 

 

• The global trigger receives inputs 

from all upstream trigger systems 

and implements the trigger menu 

• Parallel evaluation of O(1000) 

trigger algorithms that each select 

a specific event signature 

Correlator and Global Triggers 

Viacheslav Filimonov (JGU Mainz) 

A block diagram of the CMS Level-1 trigger system after the 
Phase-II upgrade 

The Phase-2 Upgrade of the CMS Level-1 Trigger. (2020). 

[Techreport]. 
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• The global trigger is reprogrammed several times per year  necessary to 

detect any data inconsistencies as fast as possible 

• The scouting system runs in parallel to the trigger system and takes in a 

subset of trigger primitives and objects at 40 MHz to verify correct system 

operation 

• New algorithm developments can be prototyped and tested rapidly in the 

scouting system using the global trigger inputs 

 

• Dedicated hardware platform 

• 2 AMD VU35P FPGAs 

• FireFly optical modules: 24x 25 Gb/s input bandwidth 

• QSFP: 5x 100 Gb/s output bandwidth 

Scouting System 

Viacheslav Filimonov (JGU Mainz) 
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• All subsystems are composed of several 

types of generic trigger processing boards 

• Standard ATCA form factor 

• Single Xilinx Virtex UltraScale+ VU13P 

device 

• Speed grade -2 

• Samtec FireFly optical modules 

• 120 TX/RX lanes at 25 Gb/s – real time data 

path 

• 4 TX/RX lanes at 28 Gb/s – readout 

• ZYNQ-7000 based IPMC 

• Control mezzanine 

• ZYNQ MPSoC-based 

APx: Generic Trigger Processing Board 

Viacheslav Filimonov (JGU Mainz) 

APxF board hardware overview 

Isobel Ojalvo, “The APx Board for the CMS Phase 2 L1 

Calorimeter trigger: Testing and Performance”, TWEPP 2024 
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ATLAS Readout: Architecture 

Viacheslav Filimonov (JGU Mainz) 

A block diagram of the ATLAS 
TDAQ system after the Phase-II 

upgrade 

• Front-End LInk eXchange (FELIX) - a data router 

that serves as an interface between the detector 

electronics and commodity computing 

• Readout, configuration, trigger, clock distribution, 

monitoring 

 

• Serves all sub-detectors 

• Consists of 350 servers with new custom PCIe 

FELIX cards 

• Handling data at 1 MHz readout rate with a total 

throughput of 4.6 TB/s. 
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ATLAS Readout: FELIX Hardware 

Viacheslav Filimonov (JGU Mainz) 

• FLX-182 

• AMD Versal Prime 

VM1802 

• PCIe Gen 4 x 16 

(240Gb/s) 

• 24 bidirectional 

optical links (25Gb/s) 

• FLX-155 

• AMD Versal 

Premium VP1552 

• PCIe Gen 5 x 16 

(480Gb/s) 

• 48 Bidirectional 

optical links (25Gb/s) 

FLX-155 prototype module hardware overview 

FLX-182 prototype module hardware overview 
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• Main differences with 

ATLAS 

• 0.75 first level 

trigger rate 

• x3 links (lp)GBT: 

50000 at up to 10 

Gb/s 

• x1.4 data 

throughput 

• The on-detector front-

end electronics sends 

the physics data to 

off-detector back-

ends 

CMS Readout: Architecture 

Viacheslav Filimonov (JGU Mainz) 

Block diagram of the CMS Plase-2 DAQ 

The Phase-2 upgrade of the CMS data acquisition and High Level 

Trigger. (2021). [Techreport]. 
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• The back-end boards 

• Standard ATCA form factor 

• Specific to sub-detector 

• Implement communication with 

the front-ends and forward the 

received physics data via point-to-

point optical links to a common 

DAQ board: the DAQ and Timing 

Hub (DTH400). 

• DTH400 

• Two AMD VU35P FPGAs 

• Aggregates the data over a full 

orbit of the LHC 

• Transmits them to the computing 

centre 

CMS Readout: Hardware 

The DTH400 board prototype-2 together with the Rear 
Transition Module (RTM) housing the embedded controller 

The Phase-2 upgrade of the CMS data acquisition and High Level 

Trigger. (2021). [Techreport]. 
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• Trigger and readout electronics for ATLAS and CMS make use of high end 

FPGAs and optical modules 

• A robust, scalable and high-performance platform provided by the ATCA 

standard supports demanding requirements in terms of power, PCB real 

estate, modularity and reliability 

• PCIe standard choice for FELIX allows moving much of the data 

processing from custom hardware into flexible software running on 

standard server platforms, reducing cost and improving scalability and 

maintainability 

• Increasing usage of the common hardware concept shifts the development 

efforts towards the firmware which often implements various functionalities 

of the identical hardware modules 

Summary 

Viacheslav Filimonov (JGU Mainz) 
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Backup 
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Phase-I Upgrade of the ATLAS detector 

LHC / HL-LHC Plan (last 

update February 2022), 

https://hilumilhc.web.cern.ch/

content/hl-lhc-project Upgrade program of the LHC accelerator complex 

Phase-I upgrade 

• The Phase I upgrade took place during the Long Shutdown 2: 2019-2022 

• The following Run 3 is in operation: 2022 to 2025 

• Peak luminosity of 2x1034 cm-2s-1 
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• Phase-I Level-1 Trigger System 

• Performs real time event 

selection 

• Reduces the event rate: 40 MHz 

 100kHz 

• Staying below the maximum 

readout rate of the ATLAS 

detector 

• Overall system latency budget 

2.5 µs 

Phase-I Level-1 Trigger System 

• The increased instantaneous luminosity of the LHC in Run 3  upgrade of 

the ATLAS trigger system is necessary 

 

A block diagram of the Level-1 trigger system after the Phase-I upgrade 

ATLAS Collaboration, "Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System", CERN-LHCC-2013-018 
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Phase-I L1Topo system: Functionality 

A block diagram of the Level-1 trigger system after the Phase-I upgrade 

ATLAS Collaboration, "Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System", CERN-LHCC-2013-018 

• As part of the Level-1 trigger system, the Level-1 topological trigger (L1Topo) 

processes data on the real-time data path from the individual Feature Extractors 

(FEXes) and the upgraded Muon  

     to Central Trigger Interface 

     (MUCTPI) to perform topological 

     triggers as well as triggers, counting 

     number of objects 

• Provides high processing 

capabilities in order to make use of 

the input objects with increased 

granularity from the new FEXes and 

the MUCTPI 
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• The L1Topo system consists of three 

ATCA modules 

• Each hosting two processor FPGAs: 

Xilinx Ultrascale+ 9P 

• High-speed optical transceivers: 

Avago MiniPODs 

• Support data transmission at speeds 

up to 11.2 Gb/s per link 

• Zynq based control mezzanine 

• Configuration, monitoring, slow control 

• Similar hardware building blocks as 

on the jFEX module 

Phase-I L1Topo system: Hardware 

Viacheslav Filimonov (JGU Mainz) 

L1Topo production module hardware overview 
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Phase-I L1Topo system: Firmware 

Viacheslav Filimonov (JGU Mainz) 

• The algorithms are automatically 

assembled and configured 

based on the provided trigger 

menu 

• The algorithm parameters can 

be set and changed via the 

IPBus by the Online Software 

during a Run 

• The topological trigger 

configuration is fully described in 

     in a single menu-driven json file, from which algorithm VHDL code, as well as IPbus 

     address mapping, are automatically generated 

• Consistency between the firmware and the software is ensured 

• Menu change may require a firmware rebuild, leaving little time for testing 
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Phase-I L1Topo system: Commissioning 

Viacheslav Filimonov (JGU Mainz) 

• The Phase-I L1Topo system has been fully commissioned with the rest of 

the new L1 trigger systems in ATLAS 

• Main commissioning challenges due to 4 different input sources  

• Different input format of TOBs 

• Different granularity of TOB coordinates 

• Complicated detectors’ geometry 

• Different time of TOBs’ readiness 

• Comparison against software implementation 

• Debugging with playback / spy 

• High statistics continuous online monitoring 

• The Phase-I L1Topo system has come into routine operation taking data in 

2024 
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Phase-I L1Topo system: First performance results 

Viacheslav Filimonov (JGU Mainz) 

• L1Topo chains provide about 70 % of unique rate for J/Ψ and ϒ candidates 

71.4 % 43.7 % 

24.2 % 

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysicsTriggerPublicResults 
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ATLAS detector 

Viacheslav Filimonov (JGU Mainz) 

• Particle beams collide every 25 ns (frequency of 40 MHz) 

• Bunch Crossing – time between the collisions (25 ns) 


