

Tracking systems of ALICE 3

A new heavy-ion detector at the LHC

17th Terascale Detector Workshop 2025 20.03.2025

Berkin Ulukutlu (TUM) on behalf of ALICE Collaboration

Tracking in ALICE: Now

ALICE ITS2 based on ALPIDE MAPS

- 10 m² area •
- 12.5 billion pixels with size of ~29x27 µm ٠
- [F. Reidt et al. NIM A (2022) 166632] •

Terascale Detector '25

Tracking in ALICE: Now

ALICE TPC based on GEMs

- Continuous readout
- PID via d*E*/dx measurement
- [ALICE TPC coll. 2021 JINST 16 P03022]

• Precedent in Bonn: FOPI TPC was the first ungated GEM TPC [NIM A 869 (2017) FOPI TPC]

Tracking in ALICE: Next step ITS3

ALICE ITS2 Inner Barrel

ALICE ITS3

Monolithic active pixel sensors

- Single silicon chip contains both the detection volume and the readout electronics
- Advantages:
 - Low capacitances = low power (10-100 mW/cm²)
 - Thin: < 50 μ m (0.05% X₀ per MAPS)
 - Highly integrated (around 100 transistors in-pixel)
 - Commercially available process
- <u>See detector seminar on MAPS at CERN by</u> <u>W. Snoeys</u>

CMOS MAPS with 65 nm technology

- For 65 nm CMOS process the epitaxial layer thickness is 10 μ m (vs ~25 μ m for ALPIDEs in 180 nm) due to planarity requirements
- Modified doping profile for improved charge collection is needed

CMOS MAPS with 65 nm technology

- For 65 nm CMOS process the epitaxial layer thickness is 10 μ m (vs ~25 μ m for ALPIDEs in 180 nm) due to planarity requirements
- Modified doping profile for improved charge collection is needed

ALICE 3: A new detector at the LHC

- Upgrading almost all components of current ALICE experiment
 - New barrel detectors with discs
 - New super conducting magnet (2T)
 - The current L3 magnet will remain but not used
- Detector concept:
 - compact low-mass all-silicon tracker
 - excellent vertex reconstruction
 - wide acceptance $|\eta| < 4$
 - PID in wide p_T range
 - high readout rate in A-A and pp

Credits

C. Gargiulo

ALICE 3: A new detector at the LHC

- Upgrading almost all components of current ALICE experiment
 - New barrel detectors with discs
 - New super conducting magnet (2T)
 - The current L3 magnet will remain but not used
- Detector concept:
 - compact low-mass all-silicon tracker
 - excellent vertex reconstruction
 - wide acceptance $|\eta| < 4$
 - PID in wide p_T range
 - high readout rate in A-A and pp

ALICE 3 layout

- Tracking done by 11 layers of silicon pixel MAPS trackers
- PID with TOF, RICH and Muon ID
 - Next talk by Manuel on TOF & PID!

ALICE 3 trackers

Dimensions of the inner tracker								
	Layer	Material	Intrinsic	Barrel layers		Forward disks		
		thickness (%X ₀)	resolution (µm)	Length Δz (cm)	Radius (r) (cm)	Position (z) (cm)	R _{in} (cm)	R _{out} (cm)
Vertex	0	0.1 0.1	2.5 2.5	50 50	0.50 1.20	26 30	0.50 0.50	2.5 2.5
Detector	2	0.1	2.5	50	2.50	34	0.50	2.5
Middle Layers	3 4 5 6	1 1 1 1	10 10 10 10	124 124 124 124	3.75 7 12 20	77 100 122	5 5 5	35 35 35

Dimensions of the outer tracker

Layer Det.		Material	Intrinsic	Barrel la	yers	Forward disks	
		thickness (%X ₀)	resolution (µm)	Full length (Δz) (cm)	Radius (r) (cm)	Position (z) (cm)	$R_{in}-R_{out}$ (cm)
6	IT/OT	1	10	1×124	20	150	5-68
7	OT	1	10	1×129	30	180	5-68
8	OT	1	10	2×129	45	220	5-68
9	OT	1	10	2×129	60	260	5-68
10	OT	1	10	2×129	80	300	5-68
11	OT	1	10			350	5-68

Vertex detector

After beam stabilization $-r_0 = 5 \text{ mm}$

Vertex detector

- Stitched and bent MAPS sensors placed in a secondary vacuum in the LHC beampipe
 - Consists of four retractable petals (IRIS)
 - 3 detection layers (barrel + disks)
 - Material budget: 0.1% X₀ / layer
 - In closed position inner radius of down to 5 mm
 - In opened position inner radius of 15 mm
- Open position needed during LHC filling prior to beam focusing

Credits Corrado Gargiulo **AITCF**

Vertex detector

- Stitched and bent MAPS sensors placed in a secondary vacuum in the LHC beampipe
 - Consists of four retractable petals (IRIS)
 - 3 detection layers (barrel + disks)
 - Material budget: 0.1% X_0 / layer
 - In closed position inner radius of down to 5 mm
 - In opened position inner radius of 15 mm
- Open position needed during LHC filling prior to beam focusing

Resolution impact

- Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$
 - driven by radius and material of first layer
 - minimal radius given by required aperture
- Up to factor 5 improvement achievable with the planned 5 mm of inner radius

Vertex detector cooling

- Cooling is a major challenge since the sensors will be inside a secondary vacuum
- Investigated cooling approach: CO₂ cooling down to -35°C of petal cases
- Heat dissipation of sensors (70 mW/cm²) with thin carbon paper and radiative cooling

Middle layers & outer tracker

- 60 m² of MAPS!
- Industrial production of sensors (~2000 wafers) and modules (~10,000) required due to the detector scale
- Aiming for mass manufacturable and modular design

Outer tracker barrel design

- 4 barrel layers
 (35 cm < R < 80 cm)
- Material budget: 1% X₀ / layer
- Low power consumption: O(20 mW/cm²)
- Spatial resolution 10 µm (pixel pitch = 50 µm)
- O(100 ns) time resolution

Outer tracker barrel design ALICE **Spaceframe** Similar geometry as ITS2 Ready for industrialization **Modules** Consists of 8 chips, positioned in 2x4 10 modules in one row Sensors 20 modules on single spaceframe Industrial assembly tests ongoing Spacer Coldplate Overlap of active area between 32 mm staves N СЛ mm

Outer tracker cooling

- The baseline cooling method is water cooling with a cold plate underneath the modules
 - Challenging for modularity (replacing not functional modules after stave assembly)
- Air cooling as a low material alternative
 - Using carbon tubes integrated into the spaceframe as air pipes
 - Local cooling via exhaust holes on the air pipe shooting cold air onto module surface
 - Similar approach was recently demonstrated for the CBM STS at FAIR/GSI

Cooling and vibration studies

- Demonstrator wind tunnel for air cooling tests
 - Emulating the heat production of sensors (20 mW/cm²) in the flex printed circuit
 - Testing different air vent hole sizes, air velocity/pressure
- Measured cooling performance and vibrations
 - Cooling for single modules demonstrated
 - Vibrations can be significantly reduced with an additional light carbon layer
 - Full scale demonstrator under construction with staves fully populated with dummy sensors

MADHAT thermal dummy OT chips produced at Bonn

MAPS with large pixel pitches

- Increasing pixel pitch up to 50 μm is possible to reduce power
- Efficiency loss is observed in the pixel corners after irradiation
 - For larger pixel pitches a larger degradation is expected
 - Has to be studied with large pixel pitch test structures

 $\frac{15 \ μm}{pixel} pitch DPTS in$ pixel detection efficiencyfor 10¹⁵ 1 MeV n_{eq} cm⁻²[G. Rinella et al. NIM A(2023) 168589]

Telescope validation for large pitch APTS studies

- In the upcoming months large pitch (30, 40 & 50 µm) variants of the Analog Pixel Test Structures (APTS) will be produced
- The performance of these structures will dictate the sensor design for ALICE Outer Tracker
- Telescope featuring BabyMOSS reference layers and DPTS for triggering with high beam rates demonstrated (up to 100kHz)

APTS

BabyMOSS

DPTS BabyMOSS

Telescope validation for large pitch APTS studies

- In the upcoming months large pitch (30, 40 & 50 µm) variants of the Analog Pixel Test Structures (APTS) will be produced
- The performance of these structures will dictate the sensor design for ALICE Outer Tracker
- Telescope featuring BabyMOSS reference layers and DPTS for triggering with high beam rates demonstrated (up to 100kHz)

Outer tracker discs

- The discs will mostly share the same module design as the barrel layers
 - Some smaller modules needed to fill the edges
- Modules mounted alternatingly on either face of a carbon disc plate
 - Overlapping the sensor periphery dead-zones
- Layout optimization studies ongoing

Simulated performance

- Using ACTS [A. Salzburger et. al., Comput. Software Big Sci 6, 8 (2022)] for seeding & tracking performance studies
 - ACTS workflow:

- $p_{\rm T}$ resolution for pions (using 2T solenoid magnetic field)
 - ≈ 0.7% at p_T ~ 1 GeV/c
 - < 2% up to $|\eta| \approx 3$

Summary and outlook

- ALICE 3 will exploit the HL-LHC as a heavy-ion collider till end of Run 5
 - Innovative (and challenging) silicon-based detector concept: ultra-light wideacceptance tracker, continuous readout
 - Pioneering several R&D directions with broad impact on future HEP experiments (e.g. FCC-ee)
- Intense R&D ongoing on all aspects of detector design

LS3

- Sensor architecture strongly inherits from the MAPS experience from ITS2 & ITS3 upgrades
- Technical design reports for the trackers in 2026

ALICE 3

Run 3

Run 4

LS4

Run 5

Thank you for the attention!

Any questions?

Sensor requirements for future ALICE trackers

		ALICE 3		
	ALICE ITS3	Vertex Detector	Tracker (ML/OT)	
Position resolution (µm)	5	2.5	10	
Pixel size (µm²)	0(20 x 20)	0(10 x 10)	0(50 x 50)	
Time resolution (ns RMS)	0(1000)	100	100	
In-pixel hit rate (Hz)	54	120	54 (barrel)	
Fake-hit rate (1 pixel / event)	< 10 ⁻⁷			
Power consumption (mW / cm²)	35	70	20	
Particle hit density (MHz / cm ²)	8.5	120	0.8	
Non-Ionising Energy Loss (1 MeV neq / cm ²)	3 x 10 ¹²	1 x 10 ¹⁶	6 x 10 ¹³	
Total Ionising Dose (Mrad)	0.3	300	3 (barrel)	
X/X ₀ / layer	0.09% (average), 0.07% (most of active region)	0.10%	1.00%	

Pixel grouping - alternative to large pitch pixels

Digital grouping:

- Reduced data rate
- No advantage on power consumption density from larger effective pitch

Analog direct grouping:

 S/N degradation, input capacitance increase (limited number of nodes ~2), power density reduced by number of connected nodes (1/n ~ 1/2)

Terascale Detector '25

Analog staged grouping:

- Pre-amplify signals with FE1 and sum up potentially more nodes without loosing S/N
- Gain in power consumption not guaranteed

ITS3

- Replacement of the Inner Barrel of the ITS2 with 3 layers of curved, 50 µm thick, wafer-scale MAPS in 65 nm CMOS process
- Air cooling and ultra-light mechanical supports (carbon foam)
- Reduction of L₀ radius: from 24 mm to 19 mm
- Reduction of material budget per layer: \rightarrow from 0.36% X/X₀ to 0.09% X/X₀

ITS3 sensor glossary

- MOSS (MOnolithic Stitched Sensor) •
 - Wafer scale stitched MAPS prototype •
 - Pixel matrix divided to eight regions with different • pixel density and front-end implementations
- BabyMOSS
 - Fully functional chip with a single MOSS repeated ٠ sensor unit (RSU)
- APTS (Analog Pixel Test Structure)
 - 4x4 pixels ٠
 - Direct connection to the signal from the analog • frontend of each pixel
- DPTS (Digital Pixel Test Structure) •
 - 32x32 pixels ٠
 - Time encoded pixel positions and ToT (time-over-• threshold) output after the disctriminator stage from pixel

BabyMOSS mounted on carrier PCB

Timing - Intrinsic pixel timing resolution

- Intrinsic pixel timing performance is not the problem for the tracker layers!
- With increased power consumption in the pixel front-end a timing resolution below 100 ps demonstrated with APTS-OpAMP
- With moderated settings in DPTS σ_t = 6.3 ns ± 0.1 ns

Timing - Readout with priority encoder

- Synchronous readout with priority encoder
- Pixels with hit write to local event buffer when strobed
- Double pixel column readout sequentially

1024 pixel columns

Timing - Readout asynchronously

- Approach described in
 <u>https://doi.org/10.1016/j.nima.2024.169663</u>
- Based on Asynchronous Fixed Priority Tree Arbiter
 - Asynchronous = no clock distribution
 - Fixed = Hardware-coded priority order in the arbiter
- Upcoming test structure: SPARC (IPHC+IRFU)
 - Chiplet planed for 65nm process in ITS3 ER2
 - Re-use with DPTS pixel FE (provided by CERN)
 - 4 controller sizes tested: 2:1, 4:1, 16:1, 64:1
 - Pixel size: 24.1x16.0 µm²

a)

ALICE ITS3 Engineering Run 1 Wafer

Design reticle

Expose Repeating Sensor Unit

Expose End Caps

