

PID detectors for a next generation heavy-ion experiment (ALICE 3)

Manuel Colocci¹ on behalf of ALICE Collaboration

¹University and INFN, Bologna (mcolocci@bo.infn.it)

17th Terascale Detector Workshop March 17-21, 2025 Program: Detector R&D for future colliders Phase II upgrades ATLAS and CMS Phase IIb upgrades ALICE and LHCb Artificial intelligence for detectors Detector school (March 17-18 Micropattern gaseous detect

Rheinische Friedrich-Wilhelms-Universität Bonn

ALICE upgrades

- ALICE 3 - ALICE3-TOF - LGAD - CMOS-LGAD - SiPM RICH - MID - Conclusions

ALICE 3 concept

Novel and innovative detector concept

- Compact and lightweight all-pixel tracker
- Retractable vertex detector
- Extensive particle identification
- Large acceptance |η|<4
- Superconducting solenoid magnet (2 T)
- Continuous read-out and online processing

** limited by LHC projections (not detector)

- ALICE 3 - ALICE3-TOF - LGAD - CMOS-LGAD - SiPM RICH MID - Conclusions

ALICE 3 concept

Novel and innovative detector concept

- Compact and lightweight all-pixel tracker
- Retractable vertex detector
- Extensive particle identification
- Large acceptance |η|<4
- Superconducting solenoid magnet (2 T)
- Continuous read-out and online processing

Key objectives:

- Access to QGP temperature vs. time
 → Precision measurement of dileptons
- Understanding thermalization in QGP
 → beauty and (multi-)charm hadrons
- Fundamental aspects of QCD phase transition
 → chiral symmetry restoration: di-elector mass spectrum
- Laboratory for hadron physics
 → hadron-hadron interaction potential, exotic hadrons

Interaction rates	ALICE*	ALICE 3	
рр	500 kHz-1 MHz	24 MHz	
Pb-Pb	50 kHz	100 kHz**	

* from LHC Run3

** limited by LHC projections (not detector)

ALICE 3 detector requirements

Component Observables		Barrel ($ \eta < 1.75$)	Forward $(1.75 < \eta < 4)$	Detectors
Vertexing	(Multi-)charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{\rm DCA} \approx 10 \mu{\rm m}$ at $p_{\rm T} = 200 {\rm MeV}/c, \eta = 0$	Best possible DCA resolution, $\sigma_{\text{DCA}} \approx 30 \mu\text{m}$ at $p_{\text{T}} = 200 \text{MeV}/c, \eta = 3$	retractable Si-pixel tracker: $\sigma_{\text{pos}} \approx 2.5 \mu\text{m},$ $R_{\text{in}} \approx 5 \text{mm},$ $X/X_0 \approx 0.1 \%$ for first layer
Tracking	(Multi-)charm baryons, dielectrons, photons	$\sigma_{p_{\mathrm{T}}}/p_{\mathrm{T}}$?	Silicon pixel tracker: $\sigma_{\text{pos}} \approx 10 \mu\text{m},$ $R_{\text{out}} \approx 80 \text{cm},$ $L \approx \pm 4 \text{m}$ $X/X_0 \approx 1 \%$ per layer	
Hadron ID	(Multi-)charm baryons	$\pi/K/p$ separation	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$	
Electron ID	Dielectrons, quarkonia, $\chi_{c1}(3872)$	pion rejection by 1000x up to 2–3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Muon ID	Quarkonia, $\chi_{c1}(3872)$	reconstruction of J/ ψ at rest, i.e. muons from $p_{\rm T} \sim 1.5$ GeV/c at $\eta = 0$		steel absorber: $L \approx 70 \mathrm{cm}$ muon detectors
ECal	Photons, jets	large ad	Pb-Sci sampling calorimeter	
ECal	Xc	high-resolution segment		PbWO ₄ calorimeter
Soft photon detection	Ultra-soft photons		measurement of photons in $p_{\rm T}$ range 1–50 MeV/c	Forward conversion tracker based on silicon pixel tracker

ALICE 3 detector requirements

Component	Observables	Barrel ($ \eta < 1.75$)	Forward (1.75 < $ \eta $ < 4)	Detectors
Vertexing	(Multi-)charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{\rm DCA} \approx 10 \mu{\rm m}$ at $p_{\rm T} = 200 {\rm MeV}/c, \eta = 0$	Best possible DCA resolution, $\sigma_{\text{DCA}} \approx 30 \mu\text{m}$ at $p_{\text{T}} = 200 \text{MeV}/c, \eta = 3$	retractable Si-pixel tracker: $\sigma_{\rm pos} \approx 2.5 \mu{\rm m},$ $R_{\rm in} \approx 5 {\rm mm},$ $X/X_0 \approx 0.1 \%$ for first layer
Tracking	(Multi-)charm baryons, dielectrons, photons	$\sigma_{p_{\mathrm{T}}}/p_{\mathrm{T}}$	$r \approx 1 - 2\%$	Silicon pixel tracker: $\sigma_{\rm pos} \approx 10 \mu{\rm m},$ $R_{\rm out} \approx 80 {\rm cm},$ $L \approx \pm 4 {\rm m}$ $X/X_0 \approx 1 \%$ per layer
Hadron ID	(Multi-)charm baryons Timir	π/K/p separation ng is needed	on up to a few GeV/c	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Electron ID	Dielectrons \rightarrow Str quarkonia, $\chi_{c1}(3872)$	rategic R&D on timin up to 2–3 GeV/c	<mark>g silicon sensors</mark>	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Muon ID	Quarkonia, $\chi_{c1}(3872)$	reconstruction of J/ ψ at rest, i.e. muons from $p_{\rm T} \sim 1.5~{\rm GeV}/c$ a $\eta=0$	ıt	steel absorber: $L \approx 70 \mathrm{cm}$ muon detectors
ECal	Photons,	large	acceptance	Pb-Sci sampling calorimeter
ECal	χc	high-resolution segment This	talk is focused mor	e on the ALICE3 timing
Soft photon detection	Ultra-soft photons		measurement of photons in $p_{\rm T}$ range 1–50 MeV/c	Forward conversion tracker based on silicon pixel tracker

---- ALICE 3 ---- ALICE3-TOF ----- LGAD ----- CMOS-LGAD ----- SiPM ----- RICH ----- MID ----- Conclusions

The ALICE3-TOF detector will provide PID over the full acceptance ($|\eta|$ <4)

Two barrel layers ($|\eta|$ <2) \rightarrow

inner-TOF: R \approx 19 cm, |z| < 62 cm, 1x1 mm² pixels outer-TOF: R \approx 85 cm, |z| < 350 cm, 5x5 mm² pixels

Two forward disks $(2 < |\eta| < 4) \rightarrow$ forward-TOF: $z \approx \pm 370$ cm, $R \approx 15-100$ cm, 1x1 mm² pixels

M. Colocci - Terascale Detector Workshop - March 17-21, 2025 (Bonn)

Total surface (TOF) ~ **45 m**²

 $e/\pi \lesssim 500$ MeV/c $K/\pi \lesssim 2.5$ GeV/c $p/K \lesssim 4$ GeV/c Separation power $\propto L/\sigma_{TOF}$ \rightarrow required **time resolution:** $\sigma_{TOF} \approx 20$ ps

Rad. hardness:

outer-TOF: NIEL ~ $9 \cdot 10^{11}$ [1 MeV n_{eq} /cm²] inner-TOF: NIEL ~ $6.1 \cdot 10^{12}$ [1 MeV n_{eq} /cm²] forward-TOF: **NIEL ~ 8.5 \cdot 10^{12}** [1 MeV n_{eq} /cm²]

Low material budget 1-3% X₀

	Ch. part. fluence
iTOF	200 kHz/cm ²
oTOF	15 kHz/cm ²
fTOF	28 kHz/cm ²

- ALICE 3 ---- ALICE3-TOF ---- LGAD ---- CMOS-LGAD ---- SIPM ---- RICH ---- MID ---- Conclusions

- ALICE 3 ---- ALICE3-TOF ---- LGAD ---- CMOS-LGAD ---- SIPM ---- RICH ---- MID ---- Conclusions

----- ALICE 3 ----- ALICE3-TOF ----- LGAD ----- CMOS-LGAD ----- SIPM ----- RICH ----- MID ----- Conclusions

CMOS-LGAD starting point

INFN-ARCADIA project

Fully depleted MAPS in 110 nm LFoundry CMOS

Available thicknesses:

• **48 um**, 100 um, 200 um (full depletion demonstrate up to 400um)

Target applications:

- Medical Imaging (PCT)
- Space applications
- HEP experiments
- X-ray imaging

3 engineering runs:

- 1st mid 2021
- 2nd beginning 2022
- 3rd beginning 2023

Main demonstrator (MD):

- Sensor array of 512x512 pixels
- Pixel pitch: 25um
- Binary pixel with event-driven readout

M. Rolo, Pixel layout

Cosmic Rays

X-ray image -photon counting

⁹⁰Sr source

ARCADIA MAPS: gain add-on option

- Add-on **p-gain** below the collecting electrode ("LGAD layout") starting from 3rd engineering run
- 48um active thickness
- ARCADIA production:

by passive structures and monolithic structures

 Requires negative bias of the backside, positive bias at the sensor pad and AC coupling of readout electronics

MadPix

Monolithic CMOS Avalanche Detector PIXelated Prototype

First CMOS-LGAD prototype with integrated electronics and gain layer

Active thickness: 48 µm

- **Backside HV**: allow <u>full depletion</u> \rightarrow -20 V to -40 V
- Topside HV: manage the gain \rightarrow 35 V to 65 V
 - 8 matrices of 64 pixels each
- 64 x 2 analogue outputs

Pixels of 250 µm x 100 µm -

4 flavours

- Not optimal for timing (distortion term), bigger pixels can be implemented in dedicated runs
- Four adjacent px's can be acquired simultaneously (4 SMA 50 Ω to scope)

First characterization

- Passive structures under focused IR laser
- Backside Illumination
- Integrated charge in time
- We have gain...
 - ... but lower than expected

- Lateral CV
- P-gain implantation energy is lower than expected (TCAD simulations)
- Gain target with nominal profile: 10-20

- Gain extraction using TCAD simulations with tuned p-gain profiles (TCAD simulations)
- Gain simulated ≈ 3
- Good agreement between data and simulation

- ALICE 3 - ALICE3-TOF - LGAD - CMOS-LGAD SIPM - RICH - MID - Conclusions

In next short-loop run the gain increased (MPV > 60 mV) \rightarrow jitter contribution will decrease (< 50 ps)

M. Colocci – Terascale Detector Workshop – March 17-21, 2025 (Bonn)

.

Beam-test results (Oct. 2024 at CERN-T10)

TB1 - A2 - J5 - CFD: 30.0%

Latest production

- Prototypes of the latest short-loop run arrived in Sep. 2024

SiPMs for timing

- SiPM as array of O(10⁴) **SPAD**s (Single Photon Avalanche Detectors) in Geiger mode (gain 10⁶) above breakdown
- Direct response of SiPMs to the passage of **charged particles** was studied for the first time

 $V_{OV} = V_{bias} - V_{breakdown}$

 \leftarrow without protection layer \rightarrow mainly 1 SPAD firing, up to 4-5 SPADs compatible with intrinsic crosstalk

light produced in the resin

ALICE 3 —— ALICE3-TOF —— LGAD —— CMOS-LGAD —— SIPM —— RICH —— MID —— Conclusions

SiPMs for timing

The increased number of firing SPADs improves significantly the time resolution (below 20 ps) \leftarrow

> Large fraction of multi SPADs events \rightarrow huge noise rejection w.r.t. standard SiPMs

> > [%] percentage of events with 1, 2, 3, etc firing SPADs

Efficiency (%)

Larger area SiPMs (3.2 x 3.12 mm²) - enough to collect all produced Cherenkov photons tested in October 2023 (CERN T10)

Rad hardness studies ongoing (lower T needed)

Large variety of applications from space experiments to colliders

RICH

Detector requirements

Extend charged PID beyond TOF limits

- Cherenkov threshold:
 - o n = 1.03 (barrel), n = 1.006 (forward)
 - o Aerogel radiator
 - SiPMs for photon detection (2x2 mm² pixel size)
- Angular resolution: $\sigma_{\rm ring} \approx 1.5$ mrad

Projective bRICH to improve coverage at large $|\eta|$ while saving on overall photosensitive area

RICH

Detector requirements

Extend charged PID beyond TOF limits

- Cherenkov threshold:
 - \circ n = 1.03 (barrel), n = 1.006 (forward)
 - o Aerogel radiator
 - SiPMs for photon detection (2x2 mm² pixel size)
- Angular resolution: $\sigma_{ring} \approx 1.5$ mrad

Projective bRICH to improve coverage at large $|\eta|$ while saving on overall photosensitive area

RICH

R&D directions

- High radiation load expected in the barrel (8.4·10¹¹ 1 MeV neq/cm²)
 → SiPM DCR increase to not tolerable values (> 4 MHz/mm²)
 - o Improve SiPM radiation hardness
 - Development of cooling (-40 C)/annealing (+50 C?) systems
- "Merged" oTOF+bRICH using a common SiPM layer coupled to a thin radiator
- Extend electron PID up to ≈ 4 GeV/c by introducing Cherenkov radiator gas (C₅F₁₀O/N₂ (20/80%), n ≈ 1.0006) into the proximity focusing gap

M. Colocci – Terascale Detector Workshop – March 17-21, 2025 (Bonn)

Central array: 1 HPK S13361-3050AE-08 (64 3x3 mm² SiPMs) Ring arrays: 7 HPK S13361-2050AE-08 (64 2x2 mm² SiPMs) Additional vessel equipped with 2 extra HPK S13361-2050AE-08 for timing Front-end: custom based on Radioroc 2 FE ASIC and picoTDC

Correcting for time walk and ch. by ch. offset,

MID detector

Requirements

- Muon ID down to $p_T \approx 1.5 \text{ GeV/c}$
- |η|<1.3

Absorber outside SC magnet

- Standard magnetic steel absorber
- Thickness of \approx 70 cm at $\eta = 0$

Muon chambers

- 160 chambers
- $\Delta \eta \ge \Delta \phi$ granularity $\rightarrow 5 \times 5 \text{ cm}^2$ cells
- 2 layers of plastic scintillator bars (good performance on light-yield output (40 phe), good time resolution (< 2 ns)
- Coupling to WLS fibers is considered
- SiPMs readout
- Alternative options to scintillator bars:
 - MWPCs: 160 chambers (pos. resolution of a few mm)
 - RPCs: 320 chambers (time, granularity 5x5 cm²)

- ALICE 3 - ALICE3-TOF - LGAD - CMOS-LGAD SIPM RICH MID Conclusions

CERN T10 (end of 2024)

MID detector

- Considered technologies being tested
- Plastic scintillators:
 - Small size prototype tested at end of 2024 (FNAL scintillator bars, WLS fiber and SiPMs)
 - Hadron suppression measured with pion beam

M. Colocci - Terascale Detector Workshop - March 17-21, 2025 (Bonn)

Summary

The ALICE collaboration actively pursues future upgrades: this is crucial to fully exploit LHC as HI collider in the next LHC runs

 To fulfill the rich physics program, ALICE 3 is being designed with fast and light PID detectors based on frontier Si-based sensors

Extensive R&D in several strategic areas (e.g. MAPS for timing, Rad-hard SiPMs) that will have a broad and strong impact for future HEP experiments
 New collaborators interested in physics and sensor R&D are welcome!

• TDR submission expected in 2027, installation in 2034-35

Back-up slides

Table 14: ECal geometry specifications for the baseline option.

ECal segment	η range	Cell technology	Cell size	Nφ	Nη	N _{tot}
Central barrel Outer barrel End cap	$ert \eta ert < 0.45 \ 0.45 < ert \eta ert < 1.6 \ 1.6 < \eta < 4 ight.$	PbWO ₄ Pb-Sci sampling Pb-Sci sampling	$\begin{array}{c} 2.2\times2.2\ \mathrm{cm}^2\\ 3\times3\ \mathrm{cm}^2\\ 4\times4\ \mathrm{cm}^2 \end{array}$	348 256	57 120	19836 30720 6000

photomultipliers (multi-pixel photon counters, MPPC)

°C with temperature stabilization (±0.1 °C)

ECal central barrel built from PbWO₄ cells needs to be cooled down to -25

Sampling cells of the outer barrel and the endcap will be produced from

alternating layers of lead absorber and plastic scintillator tiles

Laser on MadPix (CMOS-LGAD)

M. Colocci - Terascale Detector Workshop - March 17-21, 2025 (Bonn)

Physic	s goals	Subsystems and specifications							
Observable	Uniqueness	Magnet	г	от	TOF	RICH	ECAL	MID	FCT
Multi-charm baryons	Observation of multi-charm baryons in AA collisions	B = 1-2 T	σ~2.5 μm R _{in} = 5 mm x/X ₀ ~0.1% ŋ <4	σ~10 μm R _{out} > 65 cm <i>x</i> /X ₀ ~1% η <4	Outer/Forward σ ~ 20 ps	Barrel Forward			
D-Dbar correlations	Angular de-correlation of soft charm	B = 1-2 T	46	"	Outer/Forward σ ~ 20 ps	Barrel Forward			
Beauty mesons and baryons	Precision of 0.01 on elliptic flow	B = 1-2 T	65	u	Outer σ ~ 20 ps	Barrel Forward		η <1.3	
Quarkonia, χ _{∈1} (3872)	Measurement at low $p_{\rm T}$ and central rap.	B = 1-2 T	 η <1.3	η <1.3			Pb/Scintillator	η <1.3	
X e1,2	Excited charmonia in AA collisions	B = 1-2 T	η <1.3	ŋ <1.3	Outer σ ~ 20 ps	Barrel	Crystals segment	ŋ <1.3	
Di-leptons (Τ, flow, χ-symm)	Time-evolution of thermal radiation; chiral symm. at $\mu_{\rm B}=0$	B = 0.5-1 T	σ~2.5 μm R _{in} = 5 mm x/X ₀ ~0.1% ŋ <2	η <2	Inner/Outer	Barrel		η <1.3	
Net-baryon fluctuations	6 th order net-proton cumulants	B = 1-2 T	η <4	η < 4	Outer/Forward σ ~ 20 ps	Forward			
Photon-jet, full jets	High-precision low-p _⊺ , large-R jet modification						Pb/Scintillator barrel/endcap		
Hadronic physics (femtoscopy, nuclei)	Charm-charm hadronic inter.; observation of charm-nuclei; (hyper)nuclei with A = 5 and 6	B = 1-2 T	σ~2.5 μm R _{in} = 5 mm x/X ₀ ~0.1% ŋ <4	σ~10 μm R _{out} > 65 cm x/X ₀ ~1% η <4	Outer/Forward σ ~ 20 ps	Barrel Forward			
Searches in γγ in UPCs	ALPs m>0.1GeV and low coupling	B = 1-2 T	η <4	η <4	Inner/Outer/ Forward σ ~ 20 ps	Barrel/Forward	Pb/Scintillator barrel/endcap		
Ultrasoft photons	Validity and limits of Low theorem	Small dipole B ~ 0.25 T							4 < η < 5 x/X ₀ ~1%

