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ALICE upgrades

ITS3, FoCal

▪ Specific upgrades in LS3 (2026-29)

▪ TDRs approved in March 2024

▪ Moving towards “production” phase 

FoCal TDR: CERN-LHCC-2024-004 ITS3 TDR: CERN-LHCC-2024-003

ALICE 3

▪ New detector in LS4 (2034-35)

▪ LoI reviewed in 2022 (CERN-LHCC-2022-009)

Scoping Document review just completed
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After

ALICE 3 concept
Novel and innovative detector concept

▪ Compact and lightweight all-pixel tracker

▪ Retractable vertex detector

▪ Extensive particle identification

▪ Large acceptance |𝜂|<4

▪ Superconducting solenoid magnet (2 T)

▪ Continuous read-out and online processing

Interaction rates ALICE* ALICE 3

pp 500 kHz-1 MHz 24 MHz

Pb-Pb 50 kHz 100 kHz**

* from LHC Run3

** limited by LHC projections (not detector)
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ALICE 3 concept
Novel and innovative detector concept

▪ Compact and lightweight all-pixel tracker

▪ Retractable vertex detector

▪ Extensive particle identification

▪ Large acceptance |𝜂|<4

▪ Superconducting solenoid magnet (2 T)

▪ Continuous read-out and online processing

Interaction rates ALICE* ALICE 3

pp 500 kHz-1 MHz 24 MHz

Pb-Pb 50 kHz 100 kHz**

* from LHC Run3

** limited by LHC projections (not detector)

Key objectives:

▪ Access to QGP temperature vs. time
→ Precision measurement of dileptons

▪ Understanding thermalization in QGP
→ beauty and (multi-)charm hadrons

▪ Fundamental aspects of QCD phase transition
→ chiral symmetry restoration: di-elector mass spectrum

▪ Laboratory for hadron physics
→ hadron-hadron interaction potential, exotic hadrons
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After

ALICE 3 detector requirements
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After

ALICE 3 detector requirements

Timing is needed

→ Strategic R&D on timing silicon sensors

This talk is focused more on the ALICE3 timing detector
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ALICE 3 TOF detector: layout

The ALICE3-TOF detector will provide PID over the full acceptance (|𝜂|<4)

inner-TOF: R ≈ 19 cm, |z| < 62 cm, 1x1 mm2 pixels

outer-TOF: R ≈ 85 cm, |z| < 350 cm, 5x5 mm2 pixels

forward-TOF: z ≈ ±370 cm, R ≈ 15-100 cm, 1x1 mm2 pixels

Two barrel layers (|𝜂|<2) →

Two forward disks (2<|𝜂|<4) →

Total surface 

(TOF) ~ 45 m2
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ALICE 3 TOF detector requirements

𝟑𝝈 TOF PID separations

𝒆/𝝅 ≲ 500 MeV/c

𝑲/𝝅 ≲ 2.5 GeV/c

𝒑/𝑲 ≲ 4 GeV/c

Separation power ∝ Τ𝐿 𝜎𝑇𝑂𝐹
→ required time resolution: 𝝈𝑻𝑶𝑭 ≈ 𝟐𝟎 𝐩𝐬

Rad. hardness:
outer-TOF: NIEL ~ 9∙1011 [1 MeV neq /cm2]

inner-TOF: NIEL ~ 6.1∙1012 [1 MeV neq /cm2]

forward-TOF: NIEL ~ 8.5∙1012 [1 MeV neq /cm2]

Low material budget 1-3% X0

R&D on advanced silicon technologies

LGADs, CMOS-LGADs and SiPMs

Ch. part. fluence

iTOF 200 kHz/cm2

oTOF 15 kHz/cm2

fTOF 28 kHz/cm2
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25 µm
35 µm

50 µmLGADs
FBK prototypes

Structures under test (1 x 1 mm2) 

[25 µm] 25 ps: slightly worse time resolution than 

what expected

[35 µm] 22 ps: in agreement with MC simulations

double-LGAD introduced and 

tested for the first time

→ signals of both layers sum up 

using a single front-end amplifier

consistent improvement of the time resolution 

for double-LGAD w.r.t. single LGAD

F. Carnesecchi, S. Strazzi et al, EPJ Plus 138 (2023) 99

F. Carnesecchi, S. Strazzi et al, EPJ Plus 138 (2023) 990

M. Colocci – Terascale Detector Workshop – March 17-21, 2025 (Bonn) 9

—— ALICE 3 —— ALICE3-TOF —— LGAD —— CMOS-LGAD —— SiPM —— RICH —— MID —— Conclusions

https://link.springer.com/article/10.1140/epjp/s13360-022-03619-1
https://link.springer.com/article/10.1140/epjp/s13360-023-04621-x


LGADs

LGAD inclined with respect to the beam direction to probe 

the sensor response at the edges of the outer barrel (η ≃ 2)

CERN T10 beam test (π/p 10 GeV/c)

Intense beam-test campaigns at CERN-T10 

demonstrated the possibility of achieving a 

time resolution of 20 ps with thin LGAD design

Next slides: monolithic approach (CMOS-LGAD)
Less material and costs, simpler and cheaper assembly

25 µm
35 µm

50 µm

FBK prototypes

Structures under test (1 x 1 mm2) 

[25 µm] 25 ps: slightly worse time resolution than 

what expected

[35 µm] 22 ps: in agreement with MC simulations

F. Carnesecchi, S. Strazzi et al, EPJ Plus 138 (2023) 99
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CMOS-LGAD starting point
INFN-ARCADIA project

Fully depleted MAPS in 110 nm LFoundry CMOS

Available thicknesses:
▪ 48 um, 100 um, 200 um (full depletion 

demonstrate up to 400um)

Target applications:
▪ Medical Imaging (PCT) 

▪ Space applications

▪ HEP experiments

▪ X-ray imaging

3 engineering runs: 
▪ 1st – mid 2021

▪ 2nd – beginning 2022

▪ 3rd – beginning 2023

A. Patternò, Vertex 2021

ARCADIA Main Demonstrator
Cosmic Rays

X-ray image -photon 

counting

90Sr source

M. Rolo, Pixel layout

Main demonstrator (MD):
▪ Sensor array of 512x512 pixels

▪ Pixel pitch: 25um

▪ Binary pixel with event-driven readout
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▪ Add-on p-gain below the collecting electrode (“LGAD layout”) starting from 3rd engineering run

▪ 48um active thickness

▪ ARCADIA production:

passive structures and monolithic structures

▪ Requires negative bias of the backside, positive bias at the sensor pad and

AC coupling of readout electronics

ARCADIA pad sensor ARCADIA pad sensor  with gain

ARCADIA MAPS: gain add-on option
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● Not optimal for timing (distortion term), 

bigger pixels can be implemented in 

dedicated runs

● Four adjacent px’s can be acquired 

simultaneously (4 SMA 50 Ω to scope)

First CMOS-LGAD prototype with integrated electronics and gain layer 

Active thickness: 48 µm

• Backside HV: allow full depletion→ -20 V to -40 V

• Topside HV: manage the gain → 35 V to 65 V

Monolithic CMOS Avalanche Detector PIXelated Prototype

8 matrices of 64 pixels each 64 x 2 analogue outputs

4 flavours Pixels of 250 µm x 100 µm

MadPix
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First characterization

▪ Passive structures under 

focused IR laser

▪ Backside Illumination

▪ Integrated charge in time

▪ We have gain…

… but  lower than expected

▪ Lateral CV

▪ P-gain implantation energy is 

lower than expected

(TCAD simulations)

▪ Gain target with nominal profile: 

10-20

▪ Gain extraction using TCAD 

simulations with tuned p-gain 

profiles (TCAD simulations)

▪ Gain simulated ≈ 3

▪ Good agreement between data 

and simulation

First production: 

sensor gain ≈ 3

U. Follo et al 2024 JINST 19 P07033
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CERN-T10
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Laser data

Simulations

Signal amplitude of MIP

130 ps

MadPix: first beam-test
π/p

245 ps

Time resolution of 245 ps can not be explained with jitter

→ Main contributor: Sensor

Time resolution measured in a beam test

Jitter: RMS of the time difference between laser trigger out (TTL) and 

analogue output of MadPix (@ 50% signal amplitude) 

U. Follo et al 2024 JINST 19 P07033

In next short-loop run the gain increased (MPV > 60 mV) → jitter contribution will decrease (< 50 ps)

October 2023

VTOP gain activation
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MadPix: Focused Ion Beam CERN T10 - July 2024

Preliminary

Preliminary
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Sample 2

Expected behavior

Unexpected

→ Backside current 

lowered of 2 order of 

magnitude

FIB surgery done at INRIM (Torino - Italy)

Too high substrate current (guard ring was floating)

→ guard ring shortened with a Focused Ion Beam

https://www.inrim.it/it


Time res. sensor + front-end (@0.18mW/ch): 88 ps

Time resolution sensor: ≈ 75 ps

▪ Prototypes of the latest short-loop run arrived in Sep. 2024

▪ First estimation of gain using 55Fe

Gain ~ 11

(VTOP = 50 V)
𝐺𝑎𝑖𝑛 =

𝑃𝑒𝑎𝑘 [𝑉/𝑒]

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠𝑔𝑎𝑖𝑛[𝑉/𝑒]

Preliminary
Preliminary

▪ Beam-test results (Oct. 2024 at CERN-T10)Latest production

Next:

▪ Position-time correlation

▪ Radiation hardness studies

▪ Short-loop run with lower 

active thicknesses in the 

2nd part of this year
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SiPMs for timing
▪ SiPM as array of O(104) SPADs (Single Photon Avalanche 

Detectors) in Geiger mode (gain 106) above breakdown

▪ Direct response of SiPMs to the passage of charged particles 

was studied for the first time

FBK NUV-HD-RH technology

20 µm pixel pitch, 72% FF

(2444 SPADs in 1 x 1 mm2) 

high crosstalk with the protection resin 

→ large contribution of the Cherenkov 

light produced in the resin

(acting as Cherenkov radiator) 

 without  protection layer →

mainly 1 SPAD firing, up to 4-5 SPADs 

compatible with intrinsic crosstalk

F. Carnesecchi, B. Sabiu et al, EPJ Plus 138 (2023) 788
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SiPMs for timing
The increased number of firing SPADs improves 

significantly the time resolution (below 20 ps) 

Large fraction of multi SPADs events

→ huge noise rejection w.r.t. standard SiPMs

[%] percentage of events with 1, 2, 3, etc firing SPADs

F. Carnesecchi, B. Sabiu et al, EPJ Plus 138 (2023) 788

▪ Larger area SiPMs (3.2 x 3.12 mm2)
– enough to collect all produced Cherenkov photons –

tested in October 2023 (CERN T10)

- NUV-HD SiPMs produced by FBK

40 µm pixel pitch, 83% FF

(6200 SPADs in 3.2 x 3.12 mm2)

- Customized front-end XLEE 

amplifiers of ~40d dB gain

→ SiPMs can be operated at large n.p.e. threshold i.e. above the dark count

Large variety of applications from space experiments to colliders

> 3 photoe-

3 mm silicone resin

3 mm silicone resin

without protection

Rad hardness studies ongoing (lower T needed)
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eµ

Detector requirements

RICH

Projective bRICH to improve coverage at large |𝜂| 

while saving on overall photosensitive area

Surface

[m2]

NIEL

[1 MeV neq/cm2]

bRICH 28 8.3∙1011

fRICH 9 8.5∙1012▪ Extend charged PID beyond TOF limits

▪ Cherenkov threshold:

▪ Angular resolution: 𝜎ring ≈ 1 5 mrad

o n = 1.03 (barrel), n = 1.006 (forward)

o Aerogel radiator

o SiPMs for photon detection

(2x2 mm2 pixel size)
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eµ

▪ Extend charged PID beyond TOF limits

▪ Cherenkov threshold:

▪ Angular resolution: 𝜎ring ≈ 1 5 mrad

Detector requirements

RICH

Projective bRICH to improve coverage at large |𝜂| 

while saving on overall photosensitive area

Surface

[m2]

NIEL

[1 MeV neq/cm2]

bRICH 28 8.3∙1011

fRICH 9 8.5∙1012

o n = 1.03 (barrel), n = 1.006 (forward)

o Aerogel radiator

o SiPMs for photon detection

(2x2 mm2 pixel size)
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RICH

▪ High radiation load expected in the barrel (8.4∙1011 1 MeV neq/cm2)

→ SiPM DCR increase to not tolerable values (> 4 MHz/mm2)

▪ “Merged” oTOF+bRICH using a common SiPM layer coupled to a thin radiator

▪ Extend electron P D up to ≈ 4 Ge /c by introducing Cherenkov radiator gas 

(C5F10O/N2 (20/80%), n ≈ 1 0006) into the proximity focusing gap

R&D directions

CERN T10 beam test highlights

(October 2024)

o Improve SiPM radiation hardness

o Development of cooling (-40 C)/annealing (+50 C?) systems

Correcting for time walk and ch. by ch. offset,

𝚫𝒕𝒎𝒂𝒙 res  down to ≈ 50 ps ⇒ ≈ 35 ps at single SiPM levelSingle photon angular resolution

4.2 mrad

Central array: 1 HPK S13361-3050AE-08 (64 3x3 mm2 SiPMs)

Ring arrays: 7 HPK S13361-2050AE-08 (64 2x2 mm2 SiPMs)

Additional vessel equipped with 2 extra HPK S13361-2050AE-08 for timing

Front-end: custom based on Radioroc 2 FE ASIC and picoTDC
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MID detector
Requirements
▪ Muon ID down to pT ≈ 1 5 Ge /c

▪ |𝜂|<1.3

Absorber outside SC magnet

▪ Standard magnetic steel absorber

▪ Thickness of ≈ 70 cm at 𝜂 = 0

Muon chambers

▪ 160 chambers

▪ Δ𝜂 x Δ𝜙 granularity → 5x5 cm2 cells

▪ 2 layers of plastic scintillator bars
(good performance on light-yield output (40 phe), good time resolution (< 2 ns)

▪ Coupling to WLS fibers is considered

▪ SiPMs readout

▪ Alternative options to scintillator bars:

▪ MWPCs: 160 chambers (pos. resolution of a few mm)

▪ RPCs: 320 chambers (time, granularity 5x5 cm2)
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MID detector
▪ Considered technologies being tested

▪ Plastic scintillators:

▪ Small size prototype tested at end of 2024

(FNAL scintillator bars, WLS fiber and SiPMs)

▪ Hadron suppression measured with pion beam

CERN T10 (end of 2024)

▪ MWPC efficiency >95% up to 100 Hz/cm2, 

well above ALICE 3 MID

▪ Good spatial res. of 2-5 mm

Beam 5 GeV/c

▪ Charge vs. incident angle in scintillator bars

▪ 30°-60° covered by particles from the I.P

R. Alfaro et al, 2024 JINST 19 T04006

R. Alfaro et al, 2024 JINST 19 T04006
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▪ Uniform efficiency both along the horizontal 

(and vertical) position

https://iopscience.iop.org/article/10.1088/1748-0221/19/04/T04006
https://iopscience.iop.org/article/10.1088/1748-0221/19/04/T04006


Summary

▪ The ALICE collaboration actively pursues future upgrades: this is crucial to fully 

exploit LHC as HI collider in the next LHC runs

▪ To fulfill the rich physics program, ALICE 3 is being designed with fast and 

light PID detectors based on frontier Si-based sensors

▪ Extensive R&D in several strategic areas (e.g. MAPS for timing, Rad-hard SiPMs) 

that will have a broad and strong impact for future HEP experiments

○ New collaborators interested in physics and sensor R&D are welcome!

▪ TDR submission expected in 2027, installation in 2034-35
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Back-up slides
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▪ Cells:

- Lead tungstate crystals (PbWO4) (inner barrel)

- Sampling Pb-scintillator cells (both for outer barrel and endcap)

▪ Scintillation light emitted by the ECal cells is measured by silicon 

photomultipliers (multi-pixel photon counters, MPPC)

▪ ECal central barrel built from PbWO4 cells needs to be cooled down to -25 

°C with temperature stabilization (±0.1 °C)

▪ Sampling cells of the outer barrel and the endcap will be produced from 

alternating layers of lead absorber and plastic scintillator tiles

ECal
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▪ Specs

▪ Physics channels
▪ BSM searches (axions) in 𝛾𝛾 + 𝛾𝛾
▪ 𝜒𝑐1,2 → Τ𝐽 𝜓 + 𝛾

▪ Direct photon 𝛾𝑑𝑖𝑟 + jet measurements 
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Laser on MadPix (CMOS-LGAD)

Scan of sensor area 
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Metallization

𝝈𝒕 = 𝟔𝟏 𝒑𝒔

Reference time: laser

Preliminary
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