

Karlsruhe Institute of Technology

High-D-Calo Update

Melike Akbiyik

17th Terascale Detector Workshop March 17-21, 2025 University of Bonn

Outline

- High-D-Calo Overview
- Recent results and future plans

No consortium meeting this week - report primarily based on consortium meeting at DESY in December 2024, plus updates on selected activites

The High-D Calo Consortium

BMBF ErUM-Pro Funding Period 2024 - 2027

High-D-Calo Update — Terascale Detector Workshop, March 2025

Melike Akbiyik (melike.akbiyik@kit.edu)

Data Processing

and Electronics

Planned Activities: WP1

Overview

WP1: Highly Granular Calorimeters - main R&D thrust: Further develop AHCAL technology to meet requirements of circular e⁺e⁻ Higgs Factories

- WP1.1: Readout System Design and Optimisation (KIT, DESY, UHD) Develop front-end, detector interfaces and data concentration for continuous readout • WP1.2 Mechanical and Thermal Integration (JGU, DESY, UHD)
- Develop technological solution to address increased cooling needs while meeting compactness requirements
- WP1.3 System Tests (DESY, KIT, JGU, UGoe, UHH, UHD) System tests with thermal layer demonstrator and small multi-layer stack

Melike Akbiyik (melike.akbiyik@kit.edu)

4

WP1 - Recent Results

WP1.1 Readout System Design and Optimisation

Development of the front-end:

- The latest version(KLaus6b) provides full functionality. it supports both **power-pulsing** and continuous readouts.
- Low power, Power pulsing capable (~25uW) @ 0.5% duty cycle)
- I²C (Slow) or LVDS (160 Mbit/s) readout. The data limit readout of ASICs 160 Mbit/s.

KLauS6 Layout (5x5 mm²)

Development detector interfaces and data concentration for continuous readout:

- The latest DIF version contains a **Zynq-7020 SoC** (System-on-Chip),
- FPGA with an embedded dual-core ARM processor.
- **SERENITY** board for the data concentration:
 - A carrier card for the Phase-2 upgrade of the CMS experiment at the LHC at CERN. High throughput data processing (acting) as a data engine) up to 3 Tbps/board.

KLauS5

WP1 - Recent Results

WP1.2 Mechanical and Thermal Integration

Development cooling material:

- ILC environment: power consumption managed through power pulsing (1 millisecond bunch trains at 5 Hz)
- FCC-ee requirement: higher interaction rate, electronics need to remain continuously powered

Need for integrated cooling.

- Work on current cooling system for AHCAL:
 - Only cooling of Power board
 - Does not allow for continous running (... with larger slabs).
- Study of Cooling solutions for next generation prototypes:
 - Production of a cooling mock-up
 - Commisioning of a AHCAL cooling system. -
 - Fluid and Thermal Simulation
 - Verification of simulation results
- Simulation frameworks:
 - Licences for Fluid and Thermal simulations in Solidworks CAD available -
 - Experience in setup and verification of Simulation; Commisioning and integration of such a system (Mu3e Tile detector)

Simulation of Mu3e Tile detector Cooling system

Institute for ata Processing

Planned Activities: WP2

Overview

- WP2.1: Study of possible optimizations of the concept (HUB, JLU, TUM) Optimisation in terms of photon sensors, scintillator materials, design of optical coupling to fibers
- WP2.2: Towards a fully-integrated front-end readout (HUB, JLU, TUM) Develop readout system for CheapCal modules, starting from multi-channel sampling ADC, and exploring solutions with higher integration, such as CALICE ASICs
- WP2.3: Design, construction, and test of the first multi-layer CheapCal prototype (HUB, JLU, TUM) Construction of a multi-layer prototype, beam tests with muons and possibly pions

Due to reduction of funding not all activities will take place.

WP2: Cost-effective Designs and Novel Materials - main R&D thrust: Further develop CheapCal project.

WP2 - Recent Results

Cost-effective Designs and Novel Materials

WP2.1:

- The activity with different scintillation materials:
- Ceramics scintillation material (Gd₂Y_{0.5}Lu_{0.5})Al₂Ga₃O₁₂:
 Ce, Mg
- BaO*2SiO₂: Ce (DSB) glass scintillation material
- Goals:
- Increase of density. Best combination of cations to optimize Zeff, LY, CTR. Reduction of slow component based on implementation of Lutetium(Lu) in the matrix.

Material	Density, g/cm ³	Light Yield, ph/MeV	τ _{sc} , ns	λ _{max}
$Bi_3Ge_4O_{12}$ (BGO)	7.1	9 000	300	5
Lu ₂ SiO ₅ :Ce (LSO)	7.4	26 000	40	4
(Lu _{0.8} -Y _{0.2}) ₂ SiO ₅ :Ce (LYSO)	7.0	30 000	36	4
Gd ₃ Al ₂ Ga ₃ O ₁₂ :Ce , Mg (GAGG)	6.6	46 000	80	5
(Gd,Y) ₃ Al ₂ Ga ₃ O ₁₂ :Ce , Mg (GYAGG) ¹	5.8	52 000	50	5
$(Gd,Lu)_3Al_2Ga_3O_{12}$:Ce $(GLAGG)^2$	6.8	50 000	75, 190, 1300	5

Properties of heavy and bright scintillators in comparison to members of the GAGG family. • GYAGG is too light

 GLAGG has an additional very slow component that can be critical for CTR.

High-D-Calo Update — Terascale Detector Workshop, March 2025

Melike Akbiyik (melike.akbiyik@kit.edu)

Institute for

Data Processing and Electronics

WP2 - Recent Results

Cost-effective Designs and Novel Materials

Coincidence Time Resolution (CTR) :

Experimental set-up: \bullet

BaO*2SiO₂: Ce (DSB) glass scintillation material:

- Two types of the glass materials have been delivered by Schott Company: 5 samples with 20x20x5 mm³, 5 samples with 20x20x50 mm³.
- Physical properties of different heavy silica glasses:

Material	ρ g/cm3	Z _{eff}	X ₀ cm	λ _{max} nm
BaO*2SiO ₂	3.7	51	3.6	-
DSB: Ce	3.8	51	3.5	440-460
BaO*2SiO ₂ :Ce glass heavy loaded with Gd	4.3- <mark>5(</mark> ?)	56.9	2.6	440-460

High-D-Calo Update — Terascale Detector Workshop, March 2025

Properties evolution

Melike Akbiyik (melike.akbiyik@kit.edu)

Institute for

Data Processing and Electronics

Planned Activities

Brief Summary

- WP4: Sensors and Scalability main R&D thrust: Develop and characterize basic elements of optical calorimeters: SiPMs, scintillator materials
- WP4.1 SiPM characterization and radiation tolerance (UHH) Characterize SiPMs for calorimeter prototype, explore performance in areas relevant for other applications such as LIDARs
- WP4.2 Scintillator materials and production techniques (JGU, JLU) Explore and develop alternative scintillator materials and geometries

Melike Akbiyik (melike.akbiyik@kit.edu)

10

WP4 - Recent Results

WP4.1 SiPM characterization and radiation tolerance

The SiPM non-linear response:

- The detailed studies of the response of SiPMs, including after irradiation, have been and are being performed.
- Develop a tool to enable **fast simulation of** lacksquare**SiPM response** based on knowledge of basic SiPM parameters.

SUM Model:

- A comprehensive model that describes SiPM operational physics while bridging the gap between low and high light response regimes
- A modular and extensible framework for SiPM simulation, optimization, and characterization.

High-D-Calo Update — Terascale Detector Workshop, March 2025

UΗ

 10^{2}

10¹

10⁰

-4

Counts

- Cell ID.
- Signal amplitude. ► Type (light, DCR, OCT, AP).

- Step 1: Extract the SiPM key parameters: Light spectrum. Fit with PeakOTron and Extract the SiPM parameters
- Step 2: Verify the model for low light intensity: Simulate low light intensity spectrum using the key parameters extracted in step 1. Validation: Compare measured and simulated spectra.
- Step 3: Validate the full SiPM response function on measurements: Simulation (SUM): Simulate the SiPM response function and the high light intensity spectrum with SUM.

WP4 - Recent Results

WP4.2: Sensors and Scalability

Megatiles and 3D printed scintillators. Detector designs:

- Single Design: Scintillator tile individually wrapped in reflective foil. Glued to board one by one. Light tightness.
- **Megative design:** Large scintillator plate optically separated with **trenches**.

Megatile tests:

Beam test at DESY with 5GeV electrons:

• MIMOSA beam telescope with 6 planes. 1Megatile layer(latest prototype) right after telescope, 3 single tile layers behind.

3D printed tiles :

- First 3x3 tile prototype already printed, but not tested, yet.
- Developing test stand to test and characterize printed megatiles.
- Test stand has 4 SiPMs to also measure cross talk.

High-D-Calo Update — Terascale Detector Workshop, March 2025

Efficiency results:

- If a particle hits a tile, how often is there signal? Each layer considered individually.
- Denominator: Events with single telescope track.
- Numerator: Energy deposit>0.5 MIP in a square with 2cm side around extrapolated position of

	Megatile	L2	L3
Total	0.983	0.956	0.957
Middle	0.983	0.965	0.964
Trench	0.962	0.705	0.720

Efficiency of first single tile layer

- Simplifies mass production.
- No dead area in trench regior
- Cross talk within acceptable level.

Summary & Outlook

- The High-D-Calo consortium is well under way
 - Activities in all funded workpackages
 - Lively exchange in collaborative subtasks
- Activities closely aligned with DRD6 collaboration, and ECFA Detector R&D Roadmap
- Consortium meeting with broad participation in December 2024
- More discussions at upcoming DRD6 collaboration meeting.

Melike Akbiyik (melike.akbiyik@kit.edu)

13

