

Use case:

Processing the LOFAR Two-Metre Sky Survey (LoTSS)

- LOFAR radio interferometric data is large (~ 1 TB / hour)
- complex interplay of data calibration and sky brightness reconstruction ("imaging")
 - → mixture of high-throughput and high-performance computing

Special requirements:

- data are stored on tapes (long-term archive)
- very large data volumes → having many copies unfeasible
- current software design requires powerful (single) nodes and sufficient scratch space (~5 ... 20 TB)

Use case:

Processing the LOFAR Two-Metre Sky Survey (LoTSS)

c4p-login.gridka.de

Use case:

Processing the LOFAR Two-Metre Sky Survey (LoTSS)

Experiences using C4P and S4P:

- high demand for computing ressources, large transfer time
- → nodes used so far (KIT) sufficient for processing single fields in a reasonable amount of time
- → storage size also sufficient for intermediate storage

What (in principle) prevents us to go for (semi-) automized bulk processing:

- manual token renewal prevents automisation of the process in a long run
- independent service for data transfer to the compute nodes and back supporting standard protocols, e.g. gsiftp
- proprietary data if observed recently → user/group priviliges management in S4P?

