Resolution and background studies for MSSM H → bb

Andrii Terliuk DESY Summer Student 2011

Coord. Rainer Mankel CMS/Higgs group DESY Summer Student Session, 8-Sep-2011

- 1. Introduction
- 2. Signal shape study
- 3. B-tagging study
- 4. tt-background study
- 5. Summary

H

- Standard model is a very successful theory, but particles are massless.
- Need mechanism of electroweak symmetry breaking to be complete.
- Most popular mechanism proposed by Peter Higgs.

- Need special potential ⇒ spontaneous symmetry breaking
- Non-zero vacuum expectation value for breaking symmetry
- Generates scalar field at physical state
- Dominant production process in hadron collisions at LHC gg \rightarrow H
- H→bb is the dominant decay channel in SM at low masses, but hard to trigger against QCD background
- Higgs was not yet seen at LEP and Tevatron, and now search in progress at LHC.

- Higgs sector is enlarged in supersymmetry extension of SM – Minimal Supersymmetric Standard Model(MSSM):
 - 2 Higgs doublets.
 - 5 Higgs bosons: 3 neutral(h, H, A) and 2 charged H^{\pm} .
- Coupling of certain Higgs states to b quarks enhanced by tan $\boldsymbol{\beta}$
 - → processes like gg ->Hb \overline{b} become important
 - → easier to trigger wrt. QCD background
 - \rightarrow associated production with b-quark will be enhanced.
- Popular assumptions e.g. tan β ~20
 - → cross section enhanced by factor tan²β compared to standard Higgs.
 - → study of channel b(\overline{b})H, with H->b \overline{b} may be feasible
- At Tevatron, both CDF+D0 observe ~2σ excess of background estimation at this channel
 - \rightarrow Need to check this anomaly at the LHC

- Experimental signature:
 - 3 b-jets at final state, transverse momentum of 4^{th} jet is low
- Signal shape:
 - Mass resolution.
 - Combinatorial background \rightarrow see part 2.
- Important background to consider:
 - QCD multijet production(full study is outside of scope of this work):
 - 3 b-jets at final state.
 - 2 true b-jets, and one light flavor jet →need good b-tagging, see part 3.
 - tī background → see part 4.

8-Sep-2011

Andrii Terliuk: MSSM H->bb at CMS

histo Entries

Mean

RMS

150

180

200

160

939967

119.5

4.704

jets

_

Signal shape:

- To study mass resolution plot difference between reconstructed and true mass from MC generator
- From fit we observe the resolution:

 $\frac{\sigma_{\scriptscriptstyle M}}{M_{\scriptscriptstyle H}} = \frac{13 GeV}{111 GeV} \approx 11\%$

- → Mass resolution on a scale
 expected from jet energy resolution
 → also observe slight bias of peak
 position of -9 GeV
 - in semileptonic B decays, energy of neutrino escapes from detection (see back-up slides)
 - Need to apply specific b-jet energy corrections

9

For selecting b-jets we need "b-tagging" method. • B-hadron have large lifetime \rightarrow search for tracks with high impact parameters within jets.

 d_{3D} – 3D impact parameter of tracks in jet, σ_{3D} – uncertainty of impact parameter.

<u>Determine TCHE</u> (Track Counting High Efficiency) criteria as 3D impact parameter significance:

 $TCHE = \frac{d_{3D}}{\sigma_{3D}}$ - for 2nd track

<u>Determine TCHP</u> (Track Counting High Purity):

 $TCHP = \frac{d_{3D}}{\sigma_{3D}}$ - for 3rd track

For more details: see lecture by Georg Steinbrück, Aug. 18 "Top Quark Physics. Flavor Physics."

Verte

Primary Vertex

Displaced Tracks

For calculating efficiency: select "real" b-jets with MC generator information(Pythia QCD MC)

 \rightarrow B-tag efficiency decreases with higher level of discriminant threshold.

 \rightarrow Results are comparable with official paper by CMS b-tagging group(BTV-11-001).

TCHP eff u,d,s, |eta|<2.5

Similarly to previous slide - calculated "efficiency" for jets originating from light flavor and charm partons.

- \rightarrow Strong suppression for jets from light flavor.
- \rightarrow Jets from charm quarks have much higher mistag rate than light flavor
 - due to large charm mean life time

250

250

How does mis-tag rate depend on b-tag efficiency? Plot mis-tag rate vs. efficency for jets with $p_{\tau} > 50$ GeV.

• Choice for working point is compromise between efficiency of b-tagging and its purity. Better mis-tag \rightarrow lower efficiency.

• For MSSM $H \rightarrow b\overline{b}$ analysis we need very high purity \rightarrow consider cut at TCHPT or higher.

8-Sep-2011

LHC has much higher \sqrt{s} than Tevatron. \rightarrow Need to check if the time background

• Comparison of tt MC with Higgs signal MC (left) and first 501 pb⁻¹ of real data (right), MC scaled according to integrated luminosity

 \rightarrow Background from t \bar{t} is small, shape is wider than Higgs signal.

• Measurement of MSSM Higgs depends on optimization and careful subtraction of QCD background.

- Signal shape of reconstructed MSSM H->b \bar{b} studied in Monte Carlo
 - mass resolution ~11%
 - small mass shift attributed to semileptonic decays and jet energy corrections
- B tagging:
 - efficiency & mistag probabilities of track counting methods studied
 - select working point in high purity regime
- tī background estimated:
 - shape is different from expected Higgs signal
 - relative contribution to overall background is low
 - background is dominated by QCD multi-jet production
 - needs careful treatment

Thank You for Your attention!

Thanks to: Rainer Mankel, Roberval Walsh, Alexander Spiridonov, Alexei Raspereza

Back-up:Investigate the mass shift

- Study impact of semileptonic decays directly by selecting jets containing a high p_τ muon.
- For muon matching using criteria:

$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.5$$

Muons in 2 jets	-14.3 GeV
Muon in 1 jet	-11.1 GeV
Muon in event	-8.7 GeV
No muons	-8.6 GeV

- → Semileptonic decays can explain ~-3 GeV of mass shift per such jet
- Attribute remaining mass bias to special properties of b-jets
 - → to be addressed by specific additional jet energy correction

