Measurements with the EUDET Pixel Telescope Mechanical Stability - Resolution - Efficiency - Fake Hit Rate

Silvan Kuttimalai

Georg-August-Universität Göttingen II. Institute of Physics

September 7, 2011

Supervisor: Ingrid-Maria Gregor and Igor Rubinsky

- 1 The EUDET Pixel Telescope
- 2 Data Taking
- 3 Alignment Monitoring the Mechanical Stability
- **4** Pointing Resolution
- **5** Efficiency and Fake Hit Rate
- 6 Summary

Outline

1 The EUDET Pixel Telescope

2 Data Taking

3 Alignment - Monitoring the Mechanical Stability

4 Pointing Resolution

5 Efficiency and Fake Hit Rate

6 Summary

Purpose of a Pixel Telescope

What is a pixel telescope?

- Newly designed tracking devices need to be characterized e.g. in terms of resolution power, efficiency, etc.
- Beam Telescopes precisely define tracks of charged particles in test beam facilities
- Essential to examination of DUT (device under test) response

Purpose of a Pixel Telescope

What is a pixel telescope?

- Newly designed tracking devices need to be characterized e.g. in terms of resolution power, efficiency, etc.
- Beam Telescopes precisely define tracks of charged particles in test beam facilities
- Essential to examination of DUT (device under test) response

Purpose of a Pixel Telescope

What is a pixel telescope?

- Newly designed tracking devices need to be characterized e.g. in terms of resolution power, efficiency, etc.
- Beam Telescopes precisely define tracks of charged particles in test beam facilities
- Essential to examination of DUT (device under test) response

The EUDET Pixel Telescope

Some facts

- Mimosa26 CMOS pixel sensors
- Desired resolution of a few μm
- Dedicated software for data acquisition and event reconstruction
- Highly modular: easy integration of many different DUTs
- Currently at CERN SPS test beam
- Improved copy "ANEMONE" at DESY II test beam

The EUDET Pixel Telescope

Some facts

- Mimosa26 CMOS pixel sensors
- Desired resolution of a few μm
- Dedicated software for data acquisition and event reconstruction
- Highly modular: easy integration of many different DUTs
- Currently at CERN SPS test beam
- Improved copy "ANEMONE" at DESY II test beam

Offline Analysis

EUTelescope software packages

ModularAnalysis & Reconstruction for the LIN ear Collider

- Based on "Marlin" analysis framework
- Provides several distinct "processors"
- LCIO data format

Full analysis chain:

- File conversion
 - raw format \rightarrow LCIO

Olustering

- Identification of "seed pixels"
- Formation of clusters
- 3 Alignment
 - Correct for deviations from nominal geometry
 - Parametrization in terms of "alignment constants"
- 4 Track fitting

Outline

1 The EUDET Pixel Telescope

2 Data Taking

- 3 Alignment Monitoring the Mechanical Stability
- 4 Pointing Resolution
- **5** Efficiency and Fake Hit Rate
- **6** Summary

Data Taking

Taking the Data

CERN SPS Test Beam:

- Four beam lines at north area
- Electrons and hadrons (pions used)
- Wide energy range

DESY II Test Beam:

- Bremsstrahlung converted with carbon fibre targets
- 1 to 6 GeV electrons or positrons

$E \ / \ GeV$	Threshold setting S/N						$E / C_{a} /$	Threshold setting S/N					
	5	6	7	8	9	10	E / Gev	5	6	7	8	9	10
120	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark	2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
80	\checkmark	\checkmark		\checkmark			3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
							4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

 \checkmark : Data taken and reconstructed \checkmark : Data taken but not yet reconstructed

Outline

1 The EUDET Pixel Telescope

2 Data Taking

3 Alignment - Monitoring the Mechanical Stability

4 Pointing Resolution

5 Efficiency and Fake Hit Rate

6 Summary

Alignment

Alignment parameters

- Δx , Δy , angles of rotation
- Alignment is done for each data taking run individually (see results)
- Change in alignment parameters indicate deformation
- · Parameters can be used to monitor mechanical stability

Monitoring the Alignment Parameters

Results - x displacement (plots adapted from Cora Fischer)

Outline

- 1 The EUDET Pixel Telescope
- 2 Data Taking
- 3 Alignment Monitoring the Mechanical Stability

4 Pointing Resolution

5 Efficiency and Fake Hit Rate

6 Summary

The Pointing Resolution

Expected residual $(x_{fit} - x_{meas})$ distribution at the DUT:

- Gaussian shape
- Contributions from the track fit and DUT resolution:

$$\sigma_{tot}^2 = \sigma_{fit}^2 + \sigma_{DUT}^2$$

- σ_{fit} can be computed from telescope parameters::
 - Sensor thickness d
 - Distances between sensors
 - The telescope's sensor resolution σ_s

Telescope's pointing resolution

$$\sigma_{\mathit{tel}}^2 := \sigma_{\mathit{fit}}^2$$

Measuring the Pointing Resolution

Strategy:

- For each track, perform fit six times with each of the sensors treated as DUT once
- Measure residual ($\Delta x = x_{fit} x_{meas}$) distribution for each sensor
- Fit analytic expression with σ_s as free parameter

$$\sigma_{tot}^2 = \sigma_{tel}^2 + \sigma_{DUT}^2 = \sigma_{tel}^2(\sigma_s) + \sigma_s^2$$

Extracting the Sensor Resolution

$$\sigma_{tot}^2 = \sigma_{tel}^2(\sigma_s) + \sigma_s^2$$

Extracting the Sensor Resolution

Pointing Resolution

Pointing Resolution vs. Threshold Setting

Outline

- 1 The EUDET Pixel Telescope
- 2 Data Taking
- 3 Alignment Monitoring the Mechanical Stability
- 4 Pointing Resolution
- **5** Efficiency and Fake Hit Rate
- **6** Summary

Efficiency

Definition

Probability of a sensor to measure a hit within a reasonable distance R_{max} from the actual track hit position, given that a particles has struck the sensor.

S. Kuttimalai (Universität Göttingen)

Efficiency and Fake Hit Rate

Efficiency

S. Kuttimalai (Universität Göttingen)

Fake Hit Rate

Definition

Probability of a pixel to fire in an event in which it was **not** hit by a particle

Outline

- 1 The EUDET Pixel Telescope
- 2 Data Taking
- 3 Alignment Monitoring the Mechanical Stability
- 4 Pointing Resolution
- **5** Efficiency and Fake Hit Rate

6 Summary

Summary and Outlook

Results

- Very rigid mechanical setup
- Decrease of resolution power and efficiency with rising threshold consistent with expectations
- Fake hit rate highly suppressed by high threshold settings
- Excellent pointing resolution below $2\mu {\rm m}$ between telescope arms can be achieved

Open questions

- How does the hit cluster size correlate with the sensor resolution?
- How does the telescope resolution vary with energy of particles?
- Does the presented approach account for increased multiple scattering effects at lower energies correctly?
- Lots of data on disk ready to be analyzed to answer these questions!

Acknowledgments...

Backup Slides

Backup Slides

Track Reconstruction via χ^2 Minimization

χ^2 contribution from fit in *x*-*z*-plane

$$\chi_{x}^{2} = \sum_{\substack{i=1\\i \neq i_{DUT}}}^{N} \left(\frac{x_{fit}^{i} - x_{meas}^{i}}{\sigma_{s}}\right)^{2} + \sum_{i=2}^{n-1} \left(\frac{\theta_{x}^{i} - \theta_{x}^{i-1}}{\sigma_{\theta}}\right)^{2} \qquad \theta_{x}^{i} \approx \frac{x_{fit}^{i+1} - x_{fit}^{i}}{z^{i+1} - z^{i}}$$

Track Reconstruction via χ^2 Minimization

χ^2 contribution from fit in *x*-*z*-plane

$$\chi_x^2 = \sum_{\substack{i=1\\i\neq i_{DUT}}}^N \left(\frac{x_{fit}^i - x_{meas}^i}{\sigma_s}\right)^2 + \sum_{i=2}^{n-1} \left(\frac{\theta_x^i - \theta_x^{i-1}}{\sigma_\theta}\right)^2 \qquad \quad \theta_x^i \approx \frac{x_{fit}^{i+1} - x_{fit}^i}{z^{i+1} - z^i}$$

Analytic χ^2 Minimization

 χ^2 is quadratic in all degrees of freedom:

$$\chi_x^2 = \sum_{\substack{i=1\\i \neq i_{DUT}}}^N \left(\frac{x_{fit}^i - x_{meas}^i}{\sigma_s}\right)^2 + \sum_{i=2}^{n-1} \left(\frac{\theta_x^i - \theta_x^{i-1}}{\sigma_\theta}\right)^2 \qquad \quad \theta_x^i \approx \frac{x_{fit}^{i+1} - x_{fit}^i}{z^{i+1} - z^i}$$

Minimization of χ^2 can be achieved by solving a set of linear equations:

$$\frac{\partial \chi^2}{\partial x_{fit}^j} = 0 \qquad \Leftrightarrow \qquad \sum_{i=1}^N \mathcal{M}_{ij} x_{fit}^i = \varepsilon_j x_{meas}^j \qquad \mathcal{M}_{ij} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial x_{fit}^i \partial x_{fit}^j}$$

Fit can be reduced to finding the inverse of \mathcal{M}

$$\mathbf{x}_{\textit{fit}}^{j} = \sum_{i=1}^{N} \mathcal{M}_{ij}^{-1} \varepsilon_{i} \mathbf{x}_{\textit{meas}}^{i} \quad \sigma_{\mathbf{x}_{\textit{fit}}^{i}}^{2} = \mathcal{M}_{ij}^{-1}$$

No Track Preselection

Comparison with IPHC Measurements

Mi26 HR-15 and HR-10 Efficiency, Fake rate and Resolution

