Constanze Hasterok, Technische Universität Dresden, Germany Supervisor: Klaus Zenker

07/09/2011

Table of contents

1 Introduction

- International Large Detector
- Time Projection Chamber
- 2 Gas Electron Multipliers
- **3** Garfield Simulations of GEMs
 - Single GEM
 - Double GEM stack
 - Triple GEM stack

4 Outlook

- Introduction

International Large Detector

International Large Detector

- Vertex detector around the beam axis
- Yellow: Time Projection Chamber (TPC)
- Blue: ECAL
- Green: HCAL
- Violet: Magnet coil and cryostat
- Brown: Muon detector

- Introduction

└─ Time Projection Chamber

Time Projection Chamber

Measurement of charged particle trajectories in 3D and $\frac{dE}{dx}$

- Signal amplification with GEMs
- Segmentation of the anode → coordinates in x and y

$$z = v_D \cdot (t_1 - t_0)$$

 v_D ... Drift velocity of e⁻ t_1 ... Arrival time at the anode t_0 ... Time of particle passage L = 4.3 mø = 3.6 m

Gas Electron Multipliers

Gas Electron Multipliers (GEMs)

- Setup: Kapton foil (50µm) enclosed by two copper layers (5µm), double conical holes
- GEM voltage: 100 V \Leftrightarrow 15kV/cm
- GEM stack: To achieve amplifications of $\sim 10^4$ with low GEM voltage (more stable)

Gas Electron Multipliers

Amplification Paramters

Ion-Backdrift = $\frac{\text{Number of ions entering drift volume}}{\frac{1}{2}}$ Number of produced ions

Electron-Transparency

 $C = \frac{\text{Number of collected electrons}}{\text{Number of electrons in drift volume}}$

Gas Electron Multipliers

Advantages of GEM stacks

- Many free parameters available (GEM voltages, transfer fields...)
- Good intrinsic ion feedback suppression
- Low discharge probability
- Wide signal on the anode (good for pad-readout)

Charge-sharing for a good spatial resolution using pad-readout

Garfield Simulations of GEMs

Simulation with Garfield

- Simulation of detectors which use gas and semi-conductors as sensitive medium
- Propagation and interactions of electrons, ions and photons
- Input: Potential (simulated by FEM programmes e.g ANSYS, CST)
- Output e.g.
 - drift lines
 - Visualtization of electric field
 - Number of ions/electrons produced in avalanches ...

Garfield Simulations of GEMs

Approach

Basic cell

- Simulation of the electric field with ANSYS in a GEM basic cell
- Applying mirror periodicity to construct the whole plane

Garfield Simulations of GEMs

Electric field

Field Lines

GEM Simulation Studies (FLC)

Garfield Simulations of GEMs

Single GEM

Drift Lines

- Yellow: Electrons
- Brown: lons
- Interaction points:
 - brown: Ionisation
 - Green: Excitation
 - Blue: Attachement

Garfield Simulations of GEMs

Single GEM

Simulation Results

GEM voltage: 300V

Gas: 80 % Ar, 20 % CO₂

Ion Backdrift

Gas	Gain	Ion-Backdrift
Considered gas: 80 % Ar, 20 % CO ₂	10.11	56.5%
TDR: 93% Ar, 5% Methan, 2% CO ₂	${\sim}60$	${\sim}70\%$
T2K: 95% Ar, 3% CF ₄ , 2% C ₄ H ₁₀	$\sim \! 1000$	${\sim}80\%$

GEM Simulation Studies (FLC)

Garfield Simulations of GEMs

Double GEM stack

Double GEM stack

Parameters:

E _{drift}	240V/cm
d _{drift}	2cm
E _{trans/ind}	1000V/cm
d _{trans/ind}	0.2cm

100 Events simulated

	Gain	Ion-Backdrift
Range	0-1000	0-85%
Average	249.7	60.6%

Garfield Simulations of GEMs

Double GEM stack

Experimental Setup: Small TPC

- Small chamber with
 Ø = 25cm
- Double GEM stack
- Unsegmented copper anode
- Operated with ⁵⁵Fe source

Garfield Simulations of GEMs

└─ Triple GEM stack

Triple GEM stack

Parameters:	
E _{drift}	240 V/cm
d _{drift}	$2 \mathrm{cm}$
E _{trans/ind}	$1000 \mathrm{Vcm}$
d _{trans/ind}	0.2cm

10 Events simulated

	Gain	Ion-Backdrift
Range	1000-5000	76-79%
Average	3625	78.22%

Outlook

Outlook

■ Double GEM stack: Comparision of the experimental Gain and Ion-Backdrift with the simulation → test the reliability on Garfield

• Optimize Triple GEM stack which will be used in the TPC:

- Use upper GEM only for Ion-Backdrift reduction (low GEM voltage)
- Optimize electron transparancy for upper GEM
- Maximize the gain with other two GEMs

