

Malte Trautwein

Undulator Simulations in CAIN for the HALHF Positron Source

Recap

- Verify simulations regarding photon spectra
- Finding suitable parameters to maximise e⁺-yield
- Prospects: collimator & polarization, automated optimization

Implementation of collimator at K=2.5, λ_u =4.3cm

Fig. 3: Photon energy distribution without collimator

#Photons: 222,563

Fig. 4: Photon energy distribution with collimator (R=0.8mm)

HALHF-Parameters: E=375 GeV, ϵ_x =90 µm, ϵ_y =0.32 µm,

 $=0.32 \ \mu m$, $\sigma_z = 0.15 \ mm$

Photon target distribution at K=2.5, λ_u =4.3cm

#Photons: 222,563

#Photons: 29,315

HALHF-Parameters: E=375 GeV, ϵ_x =90 µm, ϵ_y =0.32 µm,

σz= 0.15 mm

Influence of collimator on helicity at K=2.5, λ_u =4.3cm

Fig. 7: Photon helicity on target without collimator

Average helicity: 0.030

Fig. 8: Photon helicity on target with collimator (R=0.8mm)

HALHF-Parameters: E=375 GeV, ϵ_x =90 µm, ϵ_y =0.32 µm, σ_z = 0.15 mm

Additional polarization figures K=2.5, λ_u =4.3cm

HALHF-Parameters: E=375 GeV, ϵ_x =90 µm, ϵ_y =0.32 µm, σ_z = 0.15 mm 6

Automated optimization with optimas documentation (OD)

- Powerfull tool that can run multiple simulations at once
- open source python library
- enabling highly scalable parallel optimization
- OD can optimize on certain parameters while varying others
- usage of DESY Maxwell-Cluster
 - \rightarrow high-performance computing cluster

ILC-simulations with varying undulator parameter K

- number of photons on target
- E, L, λ_u = constant
- 0.5 < K < 3.0
- 100 simulations in total

Automated simulations with optimas

- 0.5 cm < $\lambda_{\rm u}$ <5.0 cm
- 0.5 < K < 3.0
- 137m < L < 231m
- 25.000 simulations in total
- 40 min of computing time

Prospects

- adapting optimization to maximize positron yield and polarization
- minimize length of undulator section
- implementing boundary conditions considering technical limitations
 - o magnetic fields
 - o thermal stress

reach 1.5 e⁺/e⁻ with collimator and shortest undulator section possible

References

- M. Fukuda, A Study of Yield calculation for Undulator ILC positron source (2018)
- Andriy Ushakov, Positron Source Simulations for ILC 1 TeV Upgrade (2013)
- Klaus Floettmann, Investigations Toward the Development of Polarized and Unpolarized High Intesity Positron Sources für Linear Colliders (1993)

Additional polarization figures at K=2.5, λ_u =4.3cm

Fig. 12: Energy vs. Helicity with collimator (R=0.8 mm)