Cool Copper Linac in HALHF

HALHF Workshop DESY 2025

Emilio Nanni 2025-02-27

Acknowledgements

Ankur Dhar Mei Bai Zenghai Li Mohamed Othman Wei-Hou Tan Sami Tantawi Glen White **Emma Snively** Andy Haase

Argonne National Lab

Ali Nassiri

William Berg

HALHF Positron Linac

Work in progress—aim to finish before the ESPP input deadline (March 2025)

> Separate RF linacs for PWFA drivers (high I_{avg} , low E_z) and e^+ (low I_{avg} , high E_z):

- > L-band driver linac (CLIC-like) + S-band positron linac (warm or cool copper).
- > Combiner ring to decrease Ipeak in the driver linac, and shorten the e+ bunch train
- > Lower plasma density plasma (lower E_z , better tolerances)
- > Many (3x) more stages (reduces the driver energy)
- > Polarised e^- and e^+ (ILC-like helical undulator source).

Optimizing Cavity Design Pushes for High Efficiency

Shape of cavity is optimized for efficiency (shunt impedance)

- Minimizes peak surface electric and magnetic fields
- Core technology of high gradient normal conducting accelerators

 $R_{\rm s} = G^2 / P \left[M\Omega / m \right]$

Distributed RF Coupling changes Accelerator Paradigm

RF power coupled to each cavity – no on-axis coupling

• This in turn means no shape optimization is required to ensure cavity-to-cavity coupling

Full system design requires modern virtual prototyping

Electric field magnitude produced when RF manifold feeds alternating cavities equally

SLAC

S. Tantawi, et al. PRAB 23.9 (2020): 092001.

Motivation for Developing Cold Copper RF Accelerators

Cold-copper established as a pathway for achieving high gradients in single cavities (2015) Distributed-coupling established a novel topology for achieving higher efficiency (2018) Cold-copper program has focused on understanding fundamental limits

- What gradients can we achieve?
- How efficient can we make these structures?
- How do we achieve and maintain precision alignment?
- Can we preserve beam quality with damping and detuning?
- Can we operate at higher beam powers?
- Is this concept scalable?

First Demonstration of Cold Copper Accelerating Structure

140 MeV/m measured with beam tests at NLCTA

Breakdown rate (BDR) reduction by 50x from room temperature operation

Breakdown limits primarily driven by high H-field regions within cell coupler

PRAB 23, 092001 (2020)

PRAB 24, 093201 (2021)

Cold copper can dramatically reduce breakdown rates at high gradient

Single Cell High Gradient Tests with Cu and CuAg Cavities

High power tests at LANL (room temp) and Radiabeam (cryo) with up to 5 MW per cavity

- Improved coupler design significantly reduced breakdown probability
- · C-band cavities were able to reach gradients over 250 MeV/m in cryogenic tests Test at Radiabeam
 - C-band is a sweet spot for driving high power beams with high efficiency
- All tests are done off-site due to lack of on-site high power C-band sources

Improved RF design further enhances the achievable gradient

Need for Injector Linacs for Future Colliders

- All future colliders will need injector linacs to boost electron bunches up to relativistic speeds.
- The Electron-Ion Collider (EIC) underway at Brookhaven will answer questions regarding Nuclear Physics by colliding electrons with heavy ions.
- As such the needs for generating large relativistic electron
 / positron bunches is comparable to the needs of ILC, C³
 and FCC
- Due to the higher maturity of the facility design, we looked at their Conceptual Design Report (CDR) as a benchmark.

SLAC

V. Ranjbar. EIC CD-3B Director's Review

Injector Linacs needs to accelerate High Charge Bunches

- High charge bunches would require larger apertures to minimize wakefields which can disrupt the beam
- S-band provides significant larger aperture compared to C-band for a given shunt impedance

Distributed Coupling as applied to Injector Linac Design

Design balances shunt impedance with aperture size

• S-band cavities designed with aperture ratio a/λ =0.135

Baseline design informed by EIC CDR specs

	Linac	: Properties	
req (GHz)	2.856	E_{max}/E_{acc}	2.63
ı (mm)	14.12	E_{acc}/Z_0H_{max}	0.995
1/λ	0.135	R _s (MΩ/m)	58
P _{diss} (MW)	5	E _{acc} (MV/m)	18
(a)	AV/m IV/m (b)	49 kA/m 0 kA/m (c)	Im ²
			11

Characterizing a Large Aperture Distributed Coupled Linac

Large apertures introduce coupling between cavities

This cross coupling means individual adjustment of cavity frequency is required to ensure field flatness

- These adjustments were verified with extensive simulation with ACE3P
- Bead pulls were conducted to measure field flatness as tuning was conducted

Cold Test and Tuning Results

The distribution of frequencies for each cavity was chosen through iterative measurements and simulations

Relative distribution ensured all cavities couple strongly to the pi mode of the structure

Global tuning with water blocks can be used to shift pi mode frequency during operation

Linac Performance: Warm versus Cold

As compared to existing designs, the power consumption per unit length is dramatically lower

Cryogenic operation and/or pulse compression can improve this even further

	SLAC Linac 3 m structure	PSI Linac 4 m structure	Distributed Coupling 1 m structure	Cryo-Distributed Coupling [77 K] 1 m structure
Shunt Impedance [M/m] a/ [radius/wavelength]	56* 0.125-0.092	45-56+ 0.135-0.095	58 0.1 <i>35</i>	145 0.135
Power / Length @ 40 MeV/m [MW/m]	43	39	28	11
Achievable Gradient [MeV/m] Constant BDR Scaled from Pulsed Heating	50	60	74	118

*Equivalent Rs for SW of 37 M Ω /m due to TW power to load; +Equivalent Rs 41 M Ω /m Modeled (38 Measured) PRAB 19, 100702 (2016)

SLAC

Adjustable Raft for Linac Handling

Steel raft is mounted on kinematic movers to allow for six-axis adjustments

Movers used stepper motors for slow, large adjustments, and piezos for smaller, faster ones

RAFT PLATE CONCFPT

S-BAND LINAC

Kinematic mount of S-BANE LINAC LINAC on the raft.

- Phytron LAV actuator and PI PIEZO are forming active alignment post. Structural stability is provided by short Thomson 500 series cross roller slide.
- Phytron LAV accuracy ~100nm, backlash ~1.5µm.
- Actual PIEZO range of motion expected to be -20µm - +20µm @80K with the speed of >1kHz.

S-DAIND LINAG WIDDINTED ON THE KAFT

Raft Mounted Structure

Kinematic mounts were tested on full range of motion with S-band LINAC mounted on the raft plate (weight load is more than 600 lb.). Steppers motors used for large motion.

Polytech PI PIEZO was tested with accuracy of 100nm. Visual inspection shows operation at least at 100Hz.

QCM Demo Unit with S-BAND LINAC

Quarter Cryo-Module with Rafts Assembly

TID-RFAR

CRYO MODULE SIZES ARE: Lenght – 2600mm+side flanges. Outside DIA – 900mm Inside DIA – 750mm

Currently Open Questions

- Nitrogen flow distribution
- Waveguides inside the cryostat, including thermal break and phase shifter
- Concept of vacuum interconnections
- Vibration compensations and dampers if needed

18

Quarter Cryomodule (QCM) Production

High Power Test Plans

Preparations are underway to test this structure at high power at Argonne National Laboratory (ANL), Advanced Photon Source (APS) using the Linac High-Power RF Test stand and the Linac Extension Area (LEA).

- High power test measuring breakdown rate with 30 MW klystron
- Full power + beam tests
- Second phase with two structures and 60 MW klystron
- Eventually repeat full test within quarter cryo-module

Single S-band structure within Quarter Cryo-module

Plan to maneuver QCM through the maze

HALHF Positron Linac

> Need to accelerate 160 e+ bunches of ~4.8 nC in a 2.5 µs train (16 ns spacing) at 100 Hz

• Simple RF Power: 25 MW/m no rf compressors, no circulator

Future Work: Linac Sims at Proper Gradient/Emittance

A collider on a "national" scale

Plasma acceleration for electrons + RF acceleration for positrons

Overall footprint: 3–5 km (TBD): Fits in most major particle-physics laboratories
 Construction cost estimate around \$2–4B (TBD) — national, not international scale.

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Questions?

Synergies with Electron-Ion Collider

EIC needs an injector linac to boost their 7 nC electron bunches up to 1-3 GeV

- Beam dynamics simulations were considered with the S-band structure operating at 16 MV/m
- The first 18-meter section is used to match the beam from the upstream, and accelerate the beam to ~200 MeV
- From there alternating quadrupole magnets and linac structures up to 3 GeV

Parameter	Initial value	Target value
Beam energy	4 MeV	3 GeV
Emittance x, y	60 µm	
Energy spread	1% (assumption)	0.3%
Bunch length	1 mm	N/A
Charge	11 nC	11 nC
Field gradient	16 MV/m	N/A
RF frequency	2.856 GHz, S-band	N/A
Quad length	15 cm	N/A
RF structure length	1 m	

Synergies with Future Circular Collider

FCC needs a High Energy Linac to boost to 20 GeV

- Initial study with $a/\lambda = 0.125$
- Shunt impedance at 300 K: 58.5 M Ω /m
- At 77 K: 146-158 MΩ/m
- Expected performance for 22.5 MeV/m
- Efficiency: 6 MW/m, 3 microsecond fill time
 Beam dynamics studies show emittance growth is within spec for
 <10 μm shifts

Pulse compressed version could use traveling wave manifold for faster fill time and even higher efficiency

Freq	2.8 GHz		
charge (nC)	5 nC		
initial energy	6 GeV		
final energy	20 GeV		
initial emittance	4 mm-mrad		
target final emittance	10 mm-mrad		
initial energy spread	0.1%		
final energy spread	0.14%		
90% confidence level	T T 150		

R&D Reports on S-band Structure

Fabrication Process Linac 2022

https://epaper.kek.jp/linac2022/papers/thpojo14.pdf

Tuning IPAC 2024

https://accelconf.web.cern.ch/ipac2024/pdf/TUPR14.pdf

Talk on Tuning IPAC 2024

https://agenda.linearcollider.org/event/10134/contributions/54536/

Radiabeam (Distributed Coupling) Designed and Built at SLAC

ASU CXLS (Distributed Coupling) Designed at SLAC²⁶

