FLASH2020+

Progress Review Meeting

Status of Photon Diagnostics / FEL beamline F10

Sven Toleikis for the P team Hamburg, 28.02.2025

Overview I

Recap of non-invasive measurement of

Pulse energy Wavelength Beam position

- Beam alignment tools
- Pulse length
- New gas absorber
- Polarization

→ copies of current FLASH2 instruments

- → Statistical methods @ PG, LOLA (for SASE), seed laser diagnostic (for seeding)
- → improve attenuation capability (x100)
- → (eTOF-Polarimeter "Ball-chamber"), OPIS (maybe delayed?)

Postponed additional photon diagnostics & new challenges:

- Spectral diagnostic for seeding
 Spectral information for users
- Photon beam-based undulator alignment
- Atto-second pulse length diagnostics
 @FLASH2 only, not part of F2020+
 but high priority for PSC

- → New high-resolution VLS grating spectrometer geometrical/conceptional design finished
- → K-Mono (XFEL design not 1:1 applicable)
- angular streaking with advanced Cookie-box
 new photon diagnostic beamline FL28

Basically a copy of the existing FLASH2 tools

- Intensity
- beam position
- spectral distribution
- polarization
- pulse length

Basically a copy of the existing FLASH2 tools

- Intensity
- beam position
- spectral distribution
- polarization
- pulse length

XGMD:

- absolute intensity (within ~5%)
- pulsed resolved up to 4.5 MHz
- non-invasive
- Improved XGMD design (in use at XFEL, LCLS, and SwissFEL)

Basically a copy of the existing FLASH2 tools

- Intensity
- beam position
- spectral distribution
- polarization
- pulse length

XGMD: precise beam position (within ~10μm)

Ce:YAG crystals

Basically a copy of the existing FLASH2 tools

- Intensity
- beam position
- spectral distribution
- polarization
- pulse length

OPIS:

Wavelength determination with photoelectron spectroscopy 4 eTOFs at "magic angles"

- Central wavelength monitoring (within ~0.1eV)
- Diagnostic tool for FEL bandwidth, beam position, two-color operation
- Non-invasive

- Intensity
- beam position
- spectral distribution
- polarization
- pulse length

or PG beamline in case a higher resolution is required

Re-usage of existing components

- Intensity
- beam position
- spectral distribution
- polarization
- pulse length

XSEED spectrometer in front of the absorber PSO and VO (J. Zemella)

Basically a copy of the existing FLASH2 tools

- Intensity
- beam position
- spectral distribution
- polarization
- pulse length

We still need to gain experience with **OPIS** for online polarization measurements in the tunnel. Only 4 e-TOFs might be insufficient...

OPIS

Using new cocepts

- Intensity
- beam position
- spectral distribution
- polarization
- pulse length

Angle resolving spectrometer setup "ball chamber". Idea is to check the reproducebility of the Apple-III undulator settings from time to time.

Polarization Diagnostics @ FLASH2

 Ball chamber instrument at FL21 diagnostics beamline

Polarization Diagnostics @ FLASH2

Ball chamber instrument
 Measuring angular distribution of photoelectron emission of a certain photoelectron feature from 3rd harmonic

Fit angular distribution formula

$$I(\theta) = \frac{\sigma}{4\pi} \left[1 + \frac{\beta}{4} \left[1 + 3 \cdot \mathbf{P}_{\text{lin}} \cdot \cos(2(\theta - \boldsymbol{\varphi})) \right] \right]$$

 \rightarrow Stokes parameter P_{lin} of linear polarization tilt angle φ versus horizontal axis

 $\beta(3h\nu)$ anisotropy parameter value needs to be known

 $\sigma(3hv)$ PE feature ionization cross section value is relevant for choice of PE feature and signal strength

 $I(\theta_{eTOF})$ Intensity measurement needs to be calibrated

Polarization Diagnostics with Ball Chamber 01.03.2024 - Polarization Modes

 $E_{ACC} = 880 \text{ MeV}$ hv = 104.6 eV / 313.8 eV

ABU shift = 0.0

ABU shift = +/- 0.5

Polarization Diagnostics with Ball Chamber 01.03.2024 - ABU gap scans

- 3rd harmonic signal intensity change along afterburner gap variation
- Determine/confirm the optimal gap value

BALL: Kr 3d photoelectrons

 Value of linear Stokes parameter P1 along afterburner gap variation

OPIS

- Wavelength determination with photoelectron spectroscopy 4 eTOFs at "magic angles"
 - Central wavelength monitoring (within ~0.1eV)
 - Diagnostic tool for FEL bandwidth, beam position, two-color operation
 - Non-invasive

Simulation study on polarization measurement

- Mounting OPIS chamber with a different angular alignment for improved (linear) polarization diagnostics via photoemission anisotropy
- Optimal rotation angle: 45° (with CF160 adapting flanges)
 Acceptable rot. Angles: 36°/54° (use bore circle position)

Basically a copy of the existing FLASH2 tools

- Intensity
- beam position
- spectral distribution
- polarization
- pulse length (indirect)
- beam attenuation / filtering

Here, we have to rely on indirect measurements using a TDS like PolariX or LOLA then at FLASH1

Attosecond- and Polarization Diagnostics FLASH 2020+

First steps towards angular streaking

- Single-shot, non-invasive online diagnostics for time-energy structure and polarization.
- Mapping FEL pulse time structure on the angular coordinate of photoemission ("hand of a clock")
- Advanced setup (SpeAR BMBF funded) in 2023 and adaptation for FLASH following at FL28
- ErUM-Pro TRANSALP project dedicated to a laser system (incl. postdoc) and instrumentational advances for angular streaking @ FLASH

New angular streaking pulse length diagnostic at FLASH 2.

Diagnostics and beam transport concept for FLASH1

Things we could not implement due to the reduced budget and limited

Diagnostics and beam transport concept for FLASH1 (tunnel) - FL10

Modell

FLASH1 Experimental Hall (,Albert-Einstein-Hall')

BDA area

FLASH1 Experimental Hall (,Albert-Einstein-Hall')

new FL11 beamline incl. OL beamlines and MOD hutch – currently in design phase!

Installation schedule

Pretty tight schedule

24.Feb - 2.Mar Dump installation (**) 10 3.Mar - 9.Mar Clean room installation - dump section 10.Mar - 16.Mar 11 Drilling holes for the FL10 and THz beamline 17.Mar - 23.Mar 12 Crane installation 13 24.Mar - 30.Mar Crane installation 31.Mar - 6.Apr 14 First pillars and granites installed in the tunnel / Water / air pressure pipes installation? 15 7.Apr - 13.Apr Installation of the cable trays beside the concrete pedestral? 16 14.Apr - 20.Apr Installation of covers for the pedestral bay? Test of OPIS @ PTB 17 21.Apr - 27.Apr Installation of covers for the pedestral bay? Test of OPIS @ PTB 18 28.Apr - 4.May personal interlock test intern personal interlock test tunnel partially closed 19 5.May - 11.May cool down 20 12.May - 18.May cool down Further installation and cabling 19.May - 25.May 21 cool down and 26.May - 1.Jun commissioning 23 personal interlock test 2.Jun - 8.Jun Generalprobe - IL-Test tunnel partially closed 24 9.Jun - 15.Jun Alignment of BDA and tunnel lance – Differential pumping gas attenuator 25 16.Jun - 22.Jun Close photon vacuum systems in the tunnel 26 23.Jun - 29.Jun 27 30.Jun - 6.Jul 7.Jul - 13.Jul personnel interlock test (TÜV) tunnel partially closed personal interlock test (TÜV) Commissioning of all components 29 14.Jul - 20.Jul RF-gun conditioning (Fr - Su) Fr,12:00-Mo,7:00: tunnel closed 21.Jul - 27.Jul RF-gun conditioning (Fr - Su) Fr.12:00-Mo.7:00: tunnel closed 31 28.Jul - 3.Aug RF-gun conditioning (Fr - Su) Fr,12:00-Mo,7:00: tunnel closed 32 4.Aug - 10.Aug Commissioning Further things which needs to be done at FLASH2 before the start of beam operation: Commissioning with beam 33 11.Aug - 17.Aug

Beginning of Jan.:

Originally planned start of installing components

still missing: two beamshutter chambers for FL10

four THz chambers (manufactured outside): out of specs!!!

but components are late as well:

- Replacement of several ion gauges in the FL20 beamline (tunnel and exp. hall)
- Back-intallation of the FL2 SDU into the FL23/24 beamline
- Finalizing FL23M0 mirror chamber

Installation schedule 2

Still on the agenda – 2026...

- Tunnel: missing components of FL10: e.g. OPIS?, THz: PARC, missing FEL undulators, ...
- Building FL11 beamline, MOD1.BL, OL beamlines and FL11 exp. laser hutch
- Building FL28: Angular streaking setup for attosecond- and polarization diagnostics
- Further improvement of the optical pump-probe lasers: FLASH1 and FLASH2

• ...

Reminder for the commissioning with FL1 seeded photons:

```
w/o FL11 + MOD1.BL
only

FL12 (CAMP)
but w/o pump-probe laser, but SDU at 13.5 nm
only open port beamline, with PIGLET PP laser
fl15 (TRIXS)
fixed endstation with PIGLET PP laser
```

are available!

Summary

Non-invasive measurement of

Pulse energy Wavelength Beam position

- Beam alignment tools
- Pulse length
- New gas absorber
- Polarization

→ copies of current FLASH2 instruments

- → Statistical methods @ PG, LOLA (for SASE), seed laser diagnostic (for seeding)
- → improve attenuation capability (x100)
- → eTOF-Polarimeter variant of the "Ball chamber" or OPIS

Postponed additional photon diagnostics & new challenges:

Spectral diagnostic for seeding
 Spectral information for users

- → New high-resolution VLS grating spectrometer geometrical/conceptional design finished
- → lead time from decision to installation ~3 years

Photon beam-based undulator alignment

- → K-Mono (XFEL design not 1:1 applicable)
- new R&D development necessary

Acknowledgements

FLASH2020+ is team work - WPs P1, P2, P3, P4, P5, P6, P7, S1, S4, A6 ... FS-BT, ZM, XFEL, TU Dortmund, HZB

Christopher Behrens

Yilmaz Bican

Markus Braune

Maciej Brachmanski

Günter Brenner

Markus Degenhardt

Stefan Düsterer

Siarhei Dziarzythski

Wolfgang Freund (XFEL)

Christopher Gerth

Sören Grunewald

Patrick NGotta

Gesa Goetzke

Wolfgang Helm (TU Dortmund)

Mathias Hesse

Markus IIchen (FLASH-D/TU Hamburg)

Fini Jastrow

Svea Kreis

Marion Kuhlmann

Michael Krumrey (PTB)

Carsten Mai (TU Dortmund)

Thorsten Otto

Rui Pan

Steffen Palutke

Elke Plönjes

Evgeny Schneidmiller

Horst Schulte-Schrepping

Michael Sprung

Markus Tischer

Kai Tiedtke

Sven Toleikis

Rolf Treusch

Nicole von Bargen

Mikhail Yurkov

Michael Walter

• • • •

Thank you!

Contact

DESY. Deutsches

Elektronen-Synchrotron

Sven Toleikis

sven.toleikis@desy.de

www.desy.de +49 40 8998 3827