Pixel test plans

Daniel Pitzl, DESY Pixel upgrade, 18.10.2011

- goals
- plan
- problems
- tasks

testing goals

 establish chip testing • determine operation parameters for new chips well advanced bare module test with probe card to be done established stand-alone source and test beam efficiency: • pixel w.r.t. to telescope to be done • eff(x,y,dac) = hits / tracksto be done • resolution: pixel residuals w.r.t. telescope tracks to be done cold box being designed low temperature testing: • X-ray test Uni HH

near term plan (Autumn/Winter)

• test beam:

 synchronize clock to beam: need PLL 	Daniel
 common readout with EUDET telescope 	Hanno, Shiraz
 support for tilted sensor 	Adam Zuber, Holger Maser
Pixel in E-lab 1b:	
 set up Ru source test stand 	Daniel
 establish Marlon self-trigger 	Shiraz
try ROCs without sensor: takeData at low	threshold Alexey
time walk at lowest threshold (vs Vana, vs	s VrgPr) Alexey
power vs dynamic load	Alexey
produce more test board adapters:	
get print design from Silvan Streuli, add V	Vbias connection Hanno

Tilted support for the CMS Pixel Testboard in the EUDET telescope

D. Pitzl (DESY): Pixel test plans

DESY CMS Upgrade, 18.10.2011

5

problems with psi46expert software

- UB-B-LD:
 - is fine when TBM emulator is disabled
 - UB overwritten by TBM header in emulator mode (Beat Meier)
- PreTest:
 - ► requires TBM emulator → UB problem
- Trim:
 - works with 10 triggers/point, unstable at 20 ?
- takeData:
 - WBC scan unreliable
 - corrupt data

cured with smaller USB block size?

• visit to PSI in Dec or Jan ?

old slides

Configuration at DESY

- 6 single ROCs (wire bonded to chip carrier).
- 3 ROCS with single-chip sensor (different ROC versions).
- PSI test board, with Aug 2010 FPGA firmware (binary file from Beat Meier downloaded using ALTERA USB Blaster via JTAG connector)
- run in 40 MHz mode
- Dell laptops running Ubuntu 10.10 (or 11.04) Linux.
- psi46expert software compiled using gcc-4-5-2 in AMD 64 bit.
- libftd2xx1.0.2 for USB interface from FTDI: http://www.ftdichip.com/Drivers/D2XX.htm
- Some code changes in USBInterface.h (long \rightarrow int).

PSI46expert software at DESY

- Several new routines written:
 - DAC scans, noise maps, address decoding...
- Steer psi46expert by command script instead of interactively:
 - faster, reproducible, self-documenting.
- DAC settings for 9 ROCs determined (3 with baby sensor).
- Analysis in ROOT:
 - gain map, threshold map, noise map
- Fast efficiency determination on the FPGA does not work:
 - Configuration problem (single ROC test, no TBM)?
 - Not fixed by FPGA firmware update (Aug 2010 version).
 - ► Have to use slower USB access...

Test board in Karlsruhe

- PSI46 Testboard, firmware version 6.1 (from 27.08.2010)
- Using standard psi46expert software, including some modification by T. Rohe for local trigger
- Running on Scientific Linux 5 32bit
- root version 5.08/00b
- libftd2xx version 4.13

Thomas Weiler

11.5.2011

https://indico.desy.de/conferenceDisplay.py?confId=4352 (protected)

D. Pitzl (DESY): Pixel test plans

DESY CMS Upgrade, 18.10.2011

Test board in Karlsruhe

D. Pitzl (DESY): Pixel test plans

DESY CMS Upgrade, 18.10.2011

Cold test box in Aachen

- Cold box for 4 modules \rightarrow workshop
- Peltier element or chiller
- Air dryer, to flush box
- Small vacuum pump to suck modules onto cold plate
- 4 x PSI test system (module adapter plus advanced test board)

Aachen cold box, PSI test system

Katja Klein 11.5.2011

https://indico.desy.de/conferenceDisplay.py?confId=4352 (protected)

Test board activists in Germany 2011

- DESY:
 - Daniel Pitzl daniel.pitzl@desy.de
 - Alexey Petrukhin petr@mail.desy.de
 - expect student, summer student
- Karsruhe:
 - Thomas Weiler Thomas.Weiler@iekp.fzk.de
- Aachen:
 - Jan Sammet jan.sammet@physik.rwth-aachen.de
 - Katja Klein Katja.Klein@cern.ch
- Hamburg:
 - Georg Steinbrück georg.steinbrueck@desy.de
 - possible student

Test board needs in Germany

task	HH	Ka/Ac	D
development	2	2	
bare module test	2	2	
module testing	2	2	
rework	1	1	
cold calibration	4	4	
X-ray calibration	1	1	
high rate test	1	1	
layer system test	2	0	
sum	15	13	28

test board desirables

- interface for the digital protocol
- faster interface (USB3 or Ethernet):
 - for pixel-wise tests
- larger memory:
 - for Xray, high rate and beam tests

- More ROCs and full modules for education and code development soon.
- common software base
 - central SVN repository?
- Common test procedures and acceptance criteria
- Common data base
- Common module identification scheme

some ROC test results from DESY

psi46expert software

- C++ class library.
- Written by Peter Trüb (ETH, 2005-2007) for Scientific Linux (32 bit).
- Now compiled with g++ 4.4.5 under Ubuntu 10.10 (64 bit).
- USB interface required some changes (long → int).
- Lot's of code only a small portion explored so far...

D. Pitzl (DESY): Pixel test plans

psi46 pixel readout chip

• adjustable by programmable DAC, per ROC

programmable register, per pixel

psi46 pixel readout chip

psi46 DACs

1	Vdig	6
2	Vana	150
3	Vsf	160
4	Vcomp	10
5	Vleak_comp	0
6	VrgPr	0
7	VwllPr	35
8	VrgSh	0
9	VwllSh	35
10	VhldDel	130
11	Vtrim	7
12	VthrComp	124
253	CtrlReg	0
254	WBC	20

13	VIBias_Bus	30
14	Vbias_sf	10
15	Voffset0p	55
16	VIbias0p	115
17	VOffsetR0	120
18	VIon	115
19	VIbias_PH	130
20	Ibias_DAC	122
21	VIbias_roc	220
22	VIColOr	100
23	Vnpix	0
24	VSumCol	0
25	Vcal	200
26	CalDel	125
27	RangeTemp	0

power

currents measured on test board.

- External supply:
 - ► VA = 1.7 V,
 - ► VD = 2.5 V.
- Analog and digital voltage can be further regulated on chip.
- PSI:
 - ► IA = 25 mA,
 - ► ID = 35 mA.
 - total 130 mW / chip
 - ► 31 µW / pixel,
 - ► 2.1 W/module,
 - 1.5 kW for Barrel.

gain and linear range

- One pixel.
- 2 Vcal ranges (PSI Xray calibration):
 - CtrlReg 0 or 4,
 - ▶ 65±5 e/DAC,
 - ► 450 e/DAC.
- Linearity for small pulses important for spatial resolution using charge sharing.
- Saturation around 36'000 e (~1.5 MIP).

linear range and saturation at PSI

Linear range vs Vsf

D. Pitzl (DESY): Pixel test plans

26

Sample and hold timing

27

- One pixel.
- Position of maximum depends on pulse height:
 - time walk.
- DAC 150 is compromise

Sample and hold timing at PSI

S. Dambach, ETH phd 2009

Comparator threshold

low threshold

• One pixel

- Analog pulse height vs threshold and calibrate amplitude.
- White region:
 - no signal.
- Colored bands are not vertical:
 - ► time walk.

Noise limit

- Activate all 4160 pixels!
- Take random trigger (50 Hz).
- Count pixels.
- Scan threshold.
- Chip is quiet for thresholds below 130.
- 2 noisy regions around 138 and 166.
- Comparator does not work for thresholds above 180.

Pixel address

Pixel address in 5 data: C1,C0 d-columns 0..25 A2, A1, A0 rows 0..159 each with 6 analog levels (2.5 bit). All well separated. Decode \rightarrow col, row.

Noise map

row

- Activate all 4160 pixels!
- Take random trigger (50 Hz).
- Scan threshold.
- Decode pixel address.
- White regions are quiet?
- Even-odd column pattern?
- Noisy regions vary with threshold.

Threshold variation

- Vcal scan for pixel 4 in each column 0..51.
- White region: no signal.
- Threshold varies by about ±5 DAC:
 - spread can be reduced by trimming.
- Columns 50, 51 have low gain.
 - systematic feature?

DESY CMS Upgrade, 18.10.2011

Time walk

Calibrate timing

- One pixel.
- Threshold set close to noise limit.
- Window is 1 BC wide.
- We choose 125.
- Small pulses:
 - time walk.

Threshold curve

- One pixel.
- Fixed threshold
- Scan Vcal
 - ▶ 999 times
- count valid readouts
- threshold curve:
 - error function
 - width = noise
 - ▶ noise = 2.1 DAC
 - ► = 130 electrons.
 - (bare chip without sensor).

Threshold curve at PSI

P. Trüb, ETH phd 2008

one pixel with test pulse

Pixel map

- $52 \times 80 = 4160$ pixel per chip.
- Vcal = 200 DAC
- VthrComp = 80
- Strong pulse
 height variation:
 - ► gain?
 - timing?