Contribution ID: 69

Non-equilibrium heating of a plasma to million-Kelvin temperature

Intense x-ray pulses from x-ray free-electron lasers (XFELs) can produce matter at extreme conditions. This can be used to gain insight on stellar and planetary interiors or on high-energy density plasmas in inertial confinement fusion. Because of the ultrashort pulse duration, XFEL-produced plasmas are initially out of equilibrium, and the ensuing thermalization dynamics are not well understood. Recently, an experiment conducted at the European XFEL demonstrated that a neon plasma was formed by an XFEL pulse with an electron temperature approaching 1 keV, corresponding to about 1 million Kelvin. The DESY summer student working on this project will have the opportunity to learn the basics of x-ray-matter interactions and plasma physics. The student will become familiar with the XATOM and XMDYN codes developed at DESY. These codes allow the student to perform non-equilibrium simulations of neon plasma formation, in order to explore how to reach such extreme temperatures and to determine the time scale on which thermalization between electrons and ions unfolds.

Group

FS-CFEL-3

Project Category

A6. Theory and computing

Special Qualifications

DESY Site

Hamburg

Primary authors: SON, Sang-Kil (CFEL-DESY); JUREK, Zoltan (FS-CFEL-3 (Forschung mit Photonen Theorie))

Presenters: SON, Sang-Kil (CFEL-DESY); JUREK, Zoltan (FS-CFEL-3 (Forschung mit Photonen Theorie))