
Introduction Organization and policy Design Style Coding Style Functions

Effective Analysis Programming

Hartmut Stadie, Christoph-Erdmann Pfeiler

GridKa school
September, 6th 2011

Effective Analysis Programming Hartmut Stadie 1/ 44

Introduction Organization and policy Design Style Coding Style Functions

Outline

Introduction

Organization and policy

Design Style

Coding Style

Functions

Effective Analysis Programming Hartmut Stadie 2/ 44

Introduction Organization and policy Design Style Coding Style Functions

Introduction
Literature
Example: Path finding
Getting started

Organization and policy

Design Style

Coding Style

Functions

Effective Analysis Programming Hartmut Stadie 3/ 44

Introduction Organization and policy Design Style Coding Style Functions

Literature

Literature:
Stroustrup: “The C++ Programming Language”, 3rd edition
Sutter, Alexandrescu: “C++ Coding Standards”
Press et al.: “Numerical Recipes 3rd edition”
Meyers: “Effective C++” etc.
...

Read a book on programming!
You spend a lot of time writing code and should know how to do this!

Effective Analysis Programming Hartmut Stadie 4/ 44

Introduction Organization and policy Design Style Coding Style Functions

Coding Guidelines

There are many ways to write C++ code. Use the right one!

Disclaimer
The following is heavily influenced by the book “C++ Coding
Standards”.

Main idea:
Minimize the chance of bugs appearing in your code and find them
quickly:

use the compiler to find bugs
write simple code, use clear designs
always assume that the code will last long and be used by
someone else

Effective Analysis Programming Hartmut Stadie 5/ 44

Introduction Organization and policy Design Style Coding Style Functions

Example: Path Finding

Use cases:
e.g. computer games (RTS, RPG, and shooter) :)

Example:

XXXXXXXXXX
X X X
X s X zX
X X X
X X X
X X
XXXXXXXXXX

Effective Analysis Programming Hartmut Stadie 6/ 44

Introduction Organization and policy Design Style Coding Style Functions

Algorithms

Algorithms:

naively
Best-First-Search (distance to destination)
Dijkstra-Algorithm (distance from start)
A∗ (combination)

Effective Analysis Programming Hartmut Stadie 7/ 44

Introduction Organization and policy Design Style Coding Style Functions

Example map

Map:
XX
Xs X X
X X X
X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X zX
X X X X X
X X X X
X X X X
X X X X
X X X X
X X X
X X X
XX

Effective Analysis Programming Hartmut Stadie 8/ 44

Introduction Organization and policy Design Style Coding Style Functions

Best-First-Search

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

nodesnodes

Effective Analysis Programming Hartmut Stadie 9/ 44

Introduction Organization and policy Design Style Coding Style Functions

Dijkstra

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

nodesnodes

Effective Analysis Programming Hartmut Stadie 10/ 44

Introduction Organization and policy Design Style Coding Style Functions

A∗

39

40

41

42

43

44

45

46

47

0 5 10 15 20 25 30 35

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

nodesnodes

Effective Analysis Programming Hartmut Stadie 11/ 44

Introduction Organization and policy Design Style Coding Style Functions

Getting started

Worker nodes:
gks-1-133.fzk.de
gks-1-134.fzk.de
gks-1-135.fzk.de
gks-1-136.fzk.de

Examples:

Agenda at: https://indico.desy.de/conferenceDisplay.py?confId=4799

cp /tmp/stadie/astar.tgz .

Effective Analysis Programming Hartmut Stadie 12/ 44

https://indico.desy.de/conferenceDisplay.py?confId=4799

Introduction Organization and policy Design Style Coding Style Functions

Introduction

Organization and policy
Use a version control system
Use an automated build system
Compile cleanly and without warnings
Know and follow the coding style of your experiment
Review your code

Design Style

Coding Style

Functions

Effective Analysis Programming Hartmut Stadie 13/ 44

Introduction Organization and policy Design Style Coding Style Functions

Use a Version Control System

Version Control System:

Use the version control system that is provided by your experiment or
institution!

Here: usage of CVS shown as an example

Effective Analysis Programming Hartmut Stadie 14/ 44

Introduction Organization and policy Design Style Coding Style Functions

Version Control System: CVS

Create a repository:
mkdir cvsroot
cvs -d $PWD/cvsroot init
export CVSROOT=<full path to cvsroot>

Import project
cd astar
cvs import -m "start" AStar INITIAL start

Checkout project
cd ..
rm -rf astar
cvs co -d astar AStar

Effective Analysis Programming Hartmut Stadie 15/ 44

Introduction Organization and policy Design Style Coding Style Functions

Version Control System: CVS

How to commit code:
find differences:
cvs diff
cvs status

checkin:
commit files by name and specify precisely what has changed
cvs commit -m"precise description" <files>

check for missed files:
cvs diff --brief

test in a second release:
cd ..
cvs co -d astar2 AStar
cd astar2; make

Effective Analysis Programming Hartmut Stadie 16/ 44

Introduction Organization and policy Design Style Coding Style Functions

Tags

use "cvs tag <tagname>" to create named snapshots of your
project.
Note: you can also check out the version of a certain date.
"sticky tags": use "cvs up -A" to remove them.

Effective Analysis Programming Hartmut Stadie 17/ 44

Introduction Organization and policy Design Style Coding Style Functions

Use an Automated Build System

Automated Build System:

Use the build system that is provided by your experiment or institution!

Here: usage of simple Makefile shown as an example

Effective Analysis Programming Hartmut Stadie 18/ 44

Introduction Organization and policy Design Style Coding Style Functions

Makefile

#O2 for optimization, g for debugging
CFLAGS=-Wall -O2 -g -I. $(shell root-config --cflags)
LFLAGS=$(shell root-config --libs)
CC=g++
LD=g++

#all source files
SRCS=path.cxx Astar.cxx Map.cxx

OBJS = $(SRCS:.cxx=.o)

.PHONY: clean all

all: path

clean:
@rm -f *~ *.o *# *.d path

path: $(OBJS)
$(LD) $(LFLAGS) -o path $^

#rules
%.o : %.cxx
$(CC) $(CFLAGS) -MMD -c -o $@ $<
@sed -e ’s/#.*//’ -e ’s/^[^:]*: *//’ -e ’s/ *\\$$//’ \

-e ’/^$$/ d’ -e ’s/$$/ :/’ < $*.d >> $*.d

-include $(SRCS:%.cxx=%.d)

Effective Analysis Programming Hartmut Stadie 19/ 44

Introduction Organization and policy Design Style Coding Style Functions

Compile Cleanly and without Warnings

Warnings:

enable all checks for warnings during compilation
fix all warnings the compilers get better and better and some of
them even give the same advices as the mentioned books

Effective Analysis Programming Hartmut Stadie 20/ 44

Introduction Organization and policy Design Style Coding Style Functions

Know and Follow the Coding Style (of your
Experiment)

Coding style:

write useful comments
write code instead of comments where possible
do not write comments that repeat the code
//get node with lowest priority
miniter = min_element(m_open.begin(),m_open.end(),comparePriority);

write comments that explain the approach and rationale

use a consistent naming convention
Classes, functions, Enums
MACROs
variables
private member variables_

Read and follow the guide lines of your experiment!

Effective Analysis Programming Hartmut Stadie 21/ 44

Introduction Organization and policy Design Style Coding Style Functions

Review your Code

Discuss each others code in your group!

Effective Analysis Programming Hartmut Stadie 22/ 44

Introduction Organization and policy Design Style Coding Style Functions

Introduction

Organization and policy

Design Style
Give one entity one cohesive responsibility
Correctness, simplizity, and clarity come first
Know when and how to code for scalability
Do not optimize prematurely
Do not pessimize prematurely
Minimize global and shared data
Hide information

Coding Style

Functions

Effective Analysis Programming Hartmut Stadie 23/ 44

Introduction Organization and policy Design Style Coding Style Functions

Give one entity one cohesive responsibility

Each variable, function, class should have one responsiblity that can
be described in one sentance (or even better its name).

Effective Analysis Programming Hartmut Stadie 24/ 44

Introduction Organization and policy Design Style Coding Style Functions

Correctness, simplizity, and clarity come first

KISS: Keep it simple software

"Programs must be written or people, and only incidentally for
machines to execute" (H. Abelson and G.J. Sussmann)

correct is better than fast.
simple is better than complex.
clear is better than cute.
Safe is better than insecure.

Effective Analysis Programming Hartmut Stadie 25/ 44

Introduction Organization and policy Design Style Coding Style Functions

Know when and how to code for scalability

Use flexible, dynamically-allocated data instead of fixed-size
arrays
Know your algorithm’s actual complexity
Prefer to use linear algorithms or faster whenever possible
Try to avoid worse-than-linear algorithms whenever possible
Never use an exponential algorithm

Effective Analysis Programming Hartmut Stadie 26/ 44

Introduction Organization and policy Design Style Coding Style Functions

Do not optimize prematurely

"Premature optimization is the root of all evil." (D. Knuth)|
It is far, far easier to make a correct program fast than a fast program
correct.

Example:

Do not inline by default.
Use a profiler to see what should be inlined.

Effective Analysis Programming Hartmut Stadie 27/ 44

Introduction Organization and policy Design Style Coding Style Functions

Do not pessimize prematurely

When you have the choice between two similar constructs, do not
choose the possibly slower one

pass-by-refernce instead of pass-by-value
prefix ++, instead of postfix ++
T& operator++() //prefix
T operator++(int) //postfix

use intializer list instead of assignment in constructor
use standard algorithms instead of own loops.

Effective Analysis Programming Hartmut Stadie 28/ 44

Introduction Organization and policy Design Style Coding Style Functions

Minimize global and shared data

Avoid data with external linkage at namespace scope or as static
class members.

Effective Analysis Programming Hartmut Stadie 29/ 44

Introduction Organization and policy Design Style Coding Style Functions

Hide information

For example:

do not make data members public
return pointers or handles to them

Benefits:
it localizes changes
it strengthens invariants

Effective Analysis Programming Hartmut Stadie 30/ 44

Introduction Organization and policy Design Style Coding Style Functions

Introduction

Organization and policy

Design Style

Coding Style
Prefer compile- and link-time errors to run-time errors
Use const proactively
Avoid macros
Avoid magic numbers
Declare variables as locally as possible
Always initialize variables
Avoid long functions, avoid deep nesting
Minimize definitional dependencies
Make header files self-sufficient
Always write internal #include guards

Functions
Effective Analysis Programming Hartmut Stadie 31/ 44

Introduction Organization and policy Design Style Coding Style Functions

Prefer compile- and link-time errors to run-time errors

That’s actually the idea behind many guidelines listed here....

Examples: Use type checking

Type conversions:
exact or trival
e.g. T to const T
promotions
(integer promotions or float→ double)
e.g. bool→ int, char→ int, short→ int,(+ unsigned)
float→ double
standard conversions
e.g. int→ double, double→ int, double→ long double, int→
unsigned int
....

use enum or full classes for symbolic constants:

Effective Analysis Programming Hartmut Stadie 32/ 44

Introduction Organization and policy Design Style Coding Style Functions

Use const proactively

const
"const is your friend!"
Avoid const only when really needed and as pass-by-value
parameters in function declaration.

Some subleties:
const and pointers:
const T* t = s; //pointer to constant
T *const t t = s; //constant pointer
T const* t = s; //pointer to constant

you can use mutable (for cached data) in classes

Effective Analysis Programming Hartmut Stadie 33/ 44

Introduction Organization and policy Design Style Coding Style Functions

Avoid Macros

Effective Analysis Programming Hartmut Stadie 34/ 44

Introduction Organization and policy Design Style Coding Style Functions

Avoid magic numbers

Effective Analysis Programming Hartmut Stadie 35/ 44

Introduction Organization and policy Design Style Coding Style Functions

Declare variables as locally as possible

Limit the scope of variables!
Only declare them where you need them!

Examples:

declare variable in for:
int i = 0; for(; i < 10 ; ++i);//bad
for(int i = 0 ; i < 10 ; ++i);//better

you can even do this in if:
if(TFile *f = TFile::Open("bla.roo")) ...

Effective Analysis Programming Hartmut Stadie 36/ 44

Introduction Organization and policy Design Style Coding Style Functions

Always initialize variables

Example:
//bad
int switch;
if(bla) switch = 1;
else switch = 0;
//better
int switch = 0;
if(bla) switch = 1;
//or
int switch = bla ? 1 : 0;
//or
int switch = checkSwitch();

Effective Analysis Programming Hartmut Stadie 37/ 44

Introduction Organization and policy Design Style Coding Style Functions

Avoid long functions, avoid deep nesting

Short is better, flat is better than deep

Prefer cohesion give one function one responsibility
do not repeat yourself do not cut-and-paste, use functions
prefer && avoid nested consecutive ifs
if(A && B) ...//B is only evaluated(called) when A is true

prefer algorithms flatter than loops and easier to read
do not switch on type tags use polymorphic functions

Effective Analysis Programming Hartmut Stadie 38/ 44

Introduction Organization and policy Design Style Coding Style Functions

Minimize definitional dependencies

Use forward declarations, instead of includes
//bad
#include "T.hh"

class B {
T* member_;

}

//better
class T;

class B {
T* member_;

}

Effective Analysis Programming Hartmut Stadie 39/ 44

Introduction Organization and policy Design Style Coding Style Functions

Make header files self-sufficient

Ensure that each header is compilable standalone

Do not reply on other headers that get included to include the
headers you need.

Effective Analysis Programming Hartmut Stadie 40/ 44

Introduction Organization and policy Design Style Coding Style Functions

Always write internal #include guards

Always add to headers:
#ifndef FOO_HH
#define FOO_HH
...
contents of file
...
#endif FOO_HH

Effective Analysis Programming Hartmut Stadie 41/ 44

Introduction Organization and policy Design Style Coding Style Functions

Introduction

Organization and policy

Design Style

Coding Style

Functions
Take parameters appropriately by value, (smart) pointer, or
refernce
Miscellanea

Effective Analysis Programming Hartmut Stadie 42/ 44

Introduction Organization and policy Design Style Coding Style Functions

Take parameters appropriately by value, (smart)
pointer, or reference

Distinguish between input and output parameters and between value
and reference parameters

for input parameters:
always const-qualify pointer or references to input-only
parameters
prefer primitive(int,double) or cheap types by value
prefer taking of inputs of other types as reference to const
consider pass-by-value instead of reference if you need a copy
anyways

for output:
prefer passing by (smart) pointer if parameter is optional or the
function takes/manipulates ownership
prefer passing by reference if the parameter is needed and the
function does not take/manipulate ownership

Effective Analysis Programming Hartmut Stadie 43/ 44

Introduction Organization and policy Design Style Coding Style Functions

Miscellanea

preserve natural semantics for overloaded operators
prefer the canonical forms of arithmetic and assignment
operators
prefer the canonical form of ++ and –
consider overloading to avoid implicit type conversions
avoid overloading &$, ||, or (comma)

Effective Analysis Programming Hartmut Stadie 44/ 44

	Introduction
	Literature
	Example: Path finding
	Getting started

	Organization and policy
	Use a version control system
	Use an automated build system
	Compile cleanly and without warnings
	Know and follow the coding style of your experiment
	Review your code

	Design Style
	Give one entity one cohesive responsibility
	Correctness, simplizity, and clarity come first
	Know when and how to code for scalability
	Do not optimize prematurely
	Do not pessimize prematurely
	Minimize global and shared data
	Hide information

	Coding Style
	Prefer compile- and link-time errors to run-time errors
	Use const proactively
	Avoid macros
	Avoid magic numbers
	Declare variables as locally as possible
	Always initialize variables
	Avoid long functions, avoid deep nesting
	Minimize definitional dependencies
	Make header files self-sufficient
	Always write internal #include guards

	Functions
	Take parameters appropriately by value, (smart) pointer, or refernce
	Miscellanea

