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Literature

Literature:
Stroustrup: “The C++ Programming Language”, 3rd edition
Sutter, Alexandrescu: “C++ Coding Standards”
Press et al.: “Numerical Recipes 3rd edition”
Meyers: “Effective C++” etc.
...

Read a book on programming!
You spend a lot of time writing code and should know how to do this!
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Coding Guidelines

There are many ways to write C++ code. Use the right one!

Disclaimer
The following is heavily influenced by the book “C++ Coding
Standards”.

Main idea:
Minimize the chance of bugs appearing in your code and find them
quickly:

use the compiler to find bugs
write simple code, use clear designs
always assume that the code will last long and be used by
someone else
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Example: Path Finding

Use cases:
e.g. computer games (RTS, RPG, and shooter) :)

Example:

XXXXXXXXXX
X X X
X s X zX
X X X
X X X
X X
XXXXXXXXXX
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Algorithms

Algorithms:

naively
Best-First-Search (distance to destination)
Dijkstra-Algorithm (distance from start)
A∗ (combination)
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Example map

Map:
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Xs X X
X X X
X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X zX
X X X X X
X X X X
X X X X
X X X X
X X X X
X X X
X X X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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Best-First-Search

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

nodesnodes

Effective Analysis Programming Hartmut Stadie 9/ 44



Introduction Organization and policy Design Style Coding Style Functions

Dijkstra
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A∗
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Getting started

Worker nodes:
gks-1-133.fzk.de
gks-1-134.fzk.de
gks-1-135.fzk.de
gks-1-136.fzk.de

Examples:

Agenda at: https://indico.desy.de/conferenceDisplay.py?confId=4799

cp /tmp/stadie/astar.tgz .
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Use a Version Control System

Version Control System:

Use the version control system that is provided by your experiment or
institution!

Here: usage of CVS shown as an example
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Version Control System: CVS

Create a repository:
mkdir cvsroot
cvs -d $PWD/cvsroot init
export CVSROOT=<full path to cvsroot>

Import project
cd astar
cvs import -m "start" AStar INITIAL start

Checkout project
cd ..
rm -rf astar
cvs co -d astar AStar
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Version Control System: CVS

How to commit code:
find differences:
cvs diff
cvs status

checkin:
commit files by name and specify precisely what has changed
cvs commit -m"precise description" <files>

check for missed files:
cvs diff --brief

test in a second release:
cd ..
cvs co -d astar2 AStar
cd astar2; make
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Tags

use "cvs tag <tagname>" to create named snapshots of your
project.
Note: you can also check out the version of a certain date.
"sticky tags": use "cvs up -A" to remove them.
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Use an Automated Build System

Automated Build System:

Use the build system that is provided by your experiment or institution!

Here: usage of simple Makefile shown as an example
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Makefile

#O2 for optimization, g for debugging
CFLAGS=-Wall -O2 -g -I. $(shell root-config --cflags)
LFLAGS=$(shell root-config --libs)
CC=g++
LD=g++

#all source files
SRCS=path.cxx Astar.cxx Map.cxx

OBJS = $(SRCS:.cxx=.o)

.PHONY: clean all

all: path

clean:
@rm -f *~ *.o *# *.d path

path: $(OBJS)
$(LD) $(LFLAGS) -o path $^

#rules
%.o : %.cxx
$(CC) $(CFLAGS) -MMD -c -o $@ $<
@sed -e ’s/#.*//’ -e ’s/^[^:]*: *//’ -e ’s/ *\\$$//’ \

-e ’/^$$/ d’ -e ’s/$$/ :/’ < $*.d >> $*.d

-include $(SRCS:%.cxx=%.d)
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Compile Cleanly and without Warnings

Warnings:

enable all checks for warnings during compilation
fix all warnings the compilers get better and better and some of
them even give the same advices as the mentioned books
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Know and Follow the Coding Style (of your
Experiment)

Coding style:

write useful comments
write code instead of comments where possible
do not write comments that repeat the code
//get node with lowest priority
miniter = min_element(m_open.begin(),m_open.end(),comparePriority);

write comments that explain the approach and rationale

use a consistent naming convention
Classes, functions, Enums
MACROs
variables
private member variables_

Read and follow the guide lines of your experiment!
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Review your Code

Discuss each others code in your group!
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Introduction

Organization and policy

Design Style
Give one entity one cohesive responsibility
Correctness, simplizity, and clarity come first
Know when and how to code for scalability
Do not optimize prematurely
Do not pessimize prematurely
Minimize global and shared data
Hide information

Coding Style

Functions
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Give one entity one cohesive responsibility

Each variable, function, class should have one responsiblity that can
be described in one sentance (or even better its name).
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Correctness, simplizity, and clarity come first

KISS: Keep it simple software

"Programs must be written or people, and only incidentally for
machines to execute" (H. Abelson and G.J. Sussmann)

correct is better than fast.
simple is better than complex.
clear is better than cute.
Safe is better than insecure.
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Know when and how to code for scalability

Use flexible, dynamically-allocated data instead of fixed-size
arrays
Know your algorithm’s actual complexity
Prefer to use linear algorithms or faster whenever possible
Try to avoid worse-than-linear algorithms whenever possible
Never use an exponential algorithm
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Do not optimize prematurely

"Premature optimization is the root of all evil." (D. Knuth)|
It is far, far easier to make a correct program fast than a fast program
correct.

Example:

Do not inline by default.
Use a profiler to see what should be inlined.
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Do not pessimize prematurely

When you have the choice between two similar constructs, do not
choose the possibly slower one

pass-by-refernce instead of pass-by-value
prefix ++, instead of postfix ++
T& operator++() //prefix
T operator++(int) //postfix

use intializer list instead of assignment in constructor
use standard algorithms instead of own loops.
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Minimize global and shared data

Avoid data with external linkage at namespace scope or as static
class members.
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Hide information

For example:

do not make data members public
return pointers or handles to them

Benefits:
it localizes changes
it strengthens invariants
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Introduction

Organization and policy

Design Style

Coding Style
Prefer compile- and link-time errors to run-time errors
Use const proactively
Avoid macros
Avoid magic numbers
Declare variables as locally as possible
Always initialize variables
Avoid long functions, avoid deep nesting
Minimize definitional dependencies
Make header files self-sufficient
Always write internal #include guards

Functions
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Prefer compile- and link-time errors to run-time errors

That’s actually the idea behind many guidelines listed here....

Examples: Use type checking

Type conversions:
exact or trival
e.g. T to const T
promotions
(integer promotions or float→ double)
e.g. bool→ int, char→ int, short→ int,(+ unsigned)
float→ double
standard conversions
e.g. int→ double, double→ int, double→ long double, int→
unsigned int
....

use enum or full classes for symbolic constants:

Effective Analysis Programming Hartmut Stadie 32/ 44



Introduction Organization and policy Design Style Coding Style Functions

Use const proactively

const
"const is your friend!"
Avoid const only when really needed and as pass-by-value
parameters in function declaration.

Some subleties:
const and pointers:
const T* t = s; //pointer to constant
T *const t t = s; //constant pointer
T const* t = s; //pointer to constant

you can use mutable (for cached data) in classes
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Avoid Macros

Effective Analysis Programming Hartmut Stadie 34/ 44



Introduction Organization and policy Design Style Coding Style Functions

Avoid magic numbers
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Declare variables as locally as possible

Limit the scope of variables!
Only declare them where you need them!

Examples:

declare variable in for:
int i = 0; for(; i < 10 ; ++i);//bad
for(int i = 0 ; i < 10 ; ++i);//better

you can even do this in if:
if(TFile *f = TFile::Open("bla.roo")) ...
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Always initialize variables

Example:
//bad
int switch;
if(bla) switch = 1;
else switch = 0;
//better
int switch = 0;
if(bla) switch = 1;
//or
int switch = bla ? 1 : 0;
//or
int switch = checkSwitch();
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Avoid long functions, avoid deep nesting

Short is better, flat is better than deep

Prefer cohesion give one function one responsibility
do not repeat yourself do not cut-and-paste, use functions
prefer && avoid nested consecutive ifs
if( A && B) ...//B is only evaluated(called) when A is true

prefer algorithms flatter than loops and easier to read
do not switch on type tags use polymorphic functions
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Minimize definitional dependencies

Use forward declarations, instead of includes
//bad
#include "T.hh"

class B {
T* member_;

}

//better
class T;

class B {
T* member_;

}
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Make header files self-sufficient

Ensure that each header is compilable standalone

Do not reply on other headers that get included to include the
headers you need.
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Always write internal #include guards

Always add to headers:
#ifndef FOO_HH
#define FOO_HH
...
contents of file
...
#endif FOO_HH
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Take parameters appropriately by value, (smart) pointer, or
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Take parameters appropriately by value, (smart)
pointer, or reference

Distinguish between input and output parameters and between value
and reference parameters

for input parameters:
always const-qualify pointer or references to input-only
parameters
prefer primitive(int,double) or cheap types by value
prefer taking of inputs of other types as reference to const
consider pass-by-value instead of reference if you need a copy
anyways

for output:
prefer passing by (smart) pointer if parameter is optional or the
function takes/manipulates ownership
prefer passing by reference if the parameter is needed and the
function does not take/manipulate ownership
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Miscellanea

preserve natural semantics for overloaded operators
prefer the canonical forms of arithmetic and assignment
operators
prefer the canonical form of ++ and –
consider overloading to avoid implicit type conversions
avoid overloading &$, ||, or (comma)
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