EXPLORING BOOSTED TOP QUARK DECAYS USING RUN 3 DATA COLLECTED BY THE CMS EXPERIMENT

— **Johanna Matthiesen**¹, Johannes Haller¹, Roman Kogler², Daniel Savoiu¹ — ¹Universität Hamburg - ²DESY, Hamburg

CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE

— in CMS—

- different approaches to top tagging:
 - machine learning algorithms
 DeepAK8, ParticleNet, ...
 - cut based using jet substructure techniques
 N-subjettiness, soft drop mass

- in CMS-

- different approaches to top tagging:
 - machine learning algorithms

 DeepAK8, ParticleNet, ...
 - cut based using jet substructure techniques
 N-subjettiness, soft drop mass

$$\tau_{32} := \tau_3/\tau_2$$

- in CMS-

- different approaches to top tagging:
 - machine learning algorithms

 DeepAK8, ParticleNet, ...
 - cut based using jet substructure techniques
 N-subjettiness, soft drop mass

$$\tau_{32} := \tau_3/\tau_2$$

- in CMS-

- different approaches to top tagging:
 - machine learning algorithms

 DeepAK8, ParticleNet, ...
 - cut based using jet substructure techniques
 N-subjettiness, soft drop mass

$$\tau_{32} := \tau_3/\tau_2$$

Classifying the Cut on τ_{32}

Classifying the Cut on τ_{32}

Jet Substructure in Recorded Data

multijet

Jet Substructure in Recorded Data

Scale Factors

— to correct MC simulation —

- derive correction factors for each
 - data taking era
 - working point
 - $ightharpoonup p_{\mathsf{T}}$ bin of large-radius jet
 - merge scenario of top quark

Tag and Probe Method With $t\bar{t}$ Pairs

Tag and Probe Method With $t\bar{t}$ Pairs

au_{32} and m_{SD} of Probe Jet

au_{32} and m_{SD} of Probe Jet

au_{32} and m_{SD} of Probe Jet

SF Derivation

- simultaneous fit for merge categories and p_{T} of probe jet —
- constraint: $N_{\text{total}} = N_{\text{pass}} + N_{\text{fail}} = \text{const}$
- syst. uncertainties considered, jet energy corrections largest

SF Derivation

- simultaneous fit for merge categories and p_{T} of probe jet —
- constraint: $N_{\text{total}} = N_{\text{pass}} + N_{\text{fail}} = \text{const}$
- syst. uncertainties considered, jet energy corrections largest

SF Derivation

- simultaneous fit for merge categories and p_{T} of probe jet —
- constraint: $N_{\text{total}} = N_{\text{pass}} + N_{\text{fail}} = \text{const}$
- syst. uncertainties considered, jet energy corrections largest

github.com/columnflow/columnflow combine paper: arXiv:2404.06614

Quick derivation of SF essential to be used in analyses

Analysis Strategy

- ullet search for heavy Z like boson
- mass range from about 0.4 9 TeV
- samples to be produced for Run 3 analysis

Analysis Strategy

- search for heavy Z like boson
- mass range from about $0.4-9\,\mathrm{TeV}$
- samples to be produced for Run 3 analysis

I. Selection

II. Reconstruction

III. Event Classification

IV. Statistical Analysis

Analysis Strategy

- ullet search for heavy Z like boson
- mass range from about 0.4 9 TeV
- samples to be produced for Run 3 analysis

I. Selection

II. Reconstruction

III. Event Classification

IV. Statistical Analysis

Event Selection

— efficiency per process —

- exactly one electron/muon
- missing transverse momentum
- at least two jets
- at least one b-tagged jet
- at high p_T of lepton: jet-lepton 2D isolation (relative momentum and spatial distance)
- orthogonality to other channels

Reconstruct tt System

- boosted regime: assign top tagged large-radius jet to hadronic leg
- resolved regime:
 full jet combinatorics for both decay legs
- choose best hypothesis based on χ^2 criterion

Reconstruct tt System

- boosted regime: assign top tagged large-radius jet to hadronic leg
- resolved regime: full jet combinatorics for both decay legs
- choose best hypothesis based on χ^2 criterion
 - generally, large combinatorics due to many jets in events
 - memory intensive, also due to columnar based analysis
 - limit number of jets used for reconstruction without impacting efficiency of reconstruction

Reconstructed tt System

reconstructed mass of leptonic decay leg

Reconstructed tt System

reconstructed mass of leptonic decay leg

Johanna Matthiesen

resolved regime

ditop mass

boosted regime

6000

Reconstructed tt System

reconstructed mass of leptonic decay leg

resolved regime

Boosted Top Quarks in Run 3

ditop mass

boosted regime

Outlook

- Run 2: DNN approach and statistical analysis -
- simple neural network setup for event classification:
 - ► 59 low level input features
 - 2 hidden layers
 - ► 4 output nodes: ttbar, single top, W+jets, DY
- enrich signal region (g) 2000 with ttbar events to enhance sensitivity
- use control regions to constrain backgrounds

Outlook

— Run 2: DNN approach and statistical analysis —

- simple neural network setup for event classification:
 - ► 59 low level input features
 - ► 2 hidden layers
 - 4 output nodes: ttbar, single top, W+jets, DY
- enrich signal region with the events to enhance sensitivity
- use control regions to constrain backgrounds

 template-based binned likelihood fit with ditop mass as sensitive variable using CMS combine tool

• if no significant excess observed: set upper limits on $\sigma_{Z'} \times BR(Z' \to t\bar{t}) \text{ at } 95 \%$

confidence level

for illustration:

Summary

- identification of boosted objects essential step in many analyses
- boosted top quarks as potential window to BSM physics
 - Run 2 analysis expected to be published very soon
 - Run 3 analysis setup to look into new data
- understand cut based top tagging algorithm using jet substructure and soft drop mass
 - derive working points and scale factors

Summary

- identification of boosted objects essential step in many analyses
- boosted top quarks as potential window to BSM physics
 - Run 2 analysis expected to be published very soon
 - Run 3 analysis setup to look into new data
- understand cut based top tagging algorithm using jet substructure and soft drop mass
 - derive working points and scale factors

Stay tuned!

BACKUP

Mis-Tag Rate

number of QCD events with a FatJet passing selection AND (incorrectly) tagged as a top jet given the τ_{32} cut

total number of events in QCD dataset

Signal Efficiency

number of ttbar events with a FatJet passing selection AND (correctly) tagged as a top jet given the τ_{32} cut

total number of events in ttbar dataset

msd Of FatJets

→ fails for wide-angle soft radiation

Tag and Probe Method With tt Pairs

- single lepton
- $p_{T, lep} > 55 \text{ GeV}$

- b-tagged AK4 jet close to lepton
- $p_{T, AK4} > 15 \text{ GeV}$

- $p_{\mathsf{T}}^{\mathsf{miss}} > 50 \; \mathsf{GeV}$
- $p_{\mathsf{T}}(W_{\mathsf{lep}}) > 150 \; \mathsf{GeV}$

- $p_{T, AK8} > 300 \text{ GeV}$
- jet-lepton 2D isolation

Merge Category Algorithm

- process_ids producer-

Process	Decay mode	# of merged quarks	Subprocess
tt	semi-leptonic	3	tt_3q
		2	tt_2q
		1 or 0	tt_100q
	dileptonic or	any	tt_bkg
	fully hadronic		
st	hadronic	3	st_3q
		2	st_2q
		1 or 0	st_100q

Process	Top decay	Assoc. W decay	# of merged quarks	Subprocess
st_tW	leptonic	hadronic	3	st_bkg*
			2	st_2q
			1 or 0	st_1o0q
st_tW	leptonic	leptonic	any	st_bkg
st_other	leptonic		any	st_bkg

process ID set per event from gen level info:

- 1. Check if st or tt.
- Check if bkg:
 no probejet
 OR top decay merged into probejet not hadronic
 OR associated b quark and both associated W decay products merge into probejet
- Check if 3q or 2q:
 not bkg
 AND exactly 3/2 quarks merged into probejet
- Check if 0o1q:
 not bkg
 AND 0 or 1 quarks are merged into probejet

Impacts - Text -