

CLUSTER OF EXCELLENCE OUANTUM UNIVERSE

Improving a search for heavy neutral Higgs bosons in the $t\bar{t}Z$ final state at CMS using parameterized neural networks

DPG Frühjahrstagung 2025, Göttingen

Bianca Weidner, Matteo Bonanomi, Lukas Ebeling, Yannick Fischer, Johannes Haller, Daniel Hundhausen, Matthias Schröder

Overview

- Search targets $A \rightarrow ZH$ with decay of $H \rightarrow t\bar{t}$ (see previous talk T 25.1 by Yannick Fischer)
- Focus on hadronic decay of $t\bar{t}$
- CMS result with 138/fb of Run 2 data at 13 TeV published ¹
- Now: work on Run 3 data
- Here: study of neural network to separate signal of heavy Higgs boson events from background
- Considered mass range: $430 \text{ GeV} \le m_A \le 950 \text{ GeV}$, $330 \text{ GeV} \le m_H \le 850 \text{ GeV}$ with $\triangle m \ge 100 \text{ GeV}$

Limit plot Yannick

¹ [arXiv: 2412.00570 (subm. to PLB)] ²

Two Higgs Doublet Models (2HDM)

- Second Higgs doublet \rightarrow 5 different Higgs bosons (h, H, A, H^{\pm})
- Free parameters
 - Masses of the Higgs bosons $(m_h, m_H, m_A, m_H^{\pm})$
 - Ratio of the vacuum expectation values: $tan(\beta) = \frac{v_1}{v_2}$
 - Mixing angle α between the CP-even Higgs bosons
- "Alignment limit": $cos(\beta \alpha) \rightarrow 0$
 - Beyond the standard model h boson couples like the standard model Higgs boson

Deep neural networks

- Parameterized neural networks (PNN): true masses (m_A, m_H) used for generation of the Monte Carlo simulated signal events are used as an additional input feature
 - Background: gets random values for the true masses out of the list used for the true masses of the signals
- Implementation of a tuner to find optimal hyperparameters (Keras Hyperband Optimizer)

Dedicated neural network per mass combination

NN (1 mc): Not parameterized network (trained with 1 mass combination)

- → Performance is good, but it is impractical
- → For each mass combination a separate network is necessary

mc: number of mass combinations included AUC: area under the ROC curve in the training

Mass combination used for evaluation of the network

Neural network trained with all mass combinations

NN (1 mc): Not parameterized network (trained with 1 mass combination)

NN (79 mc): Not parameterized network (trained with 79 different mass combinations)

→ The inclusion of all signal events without parameterization leads to a significant decrease in performance for some mass combinations

Parameterized neural network trained with all mass combinations

NPN (1 mc): Not parameterized network (trained with 1 mass combination)

NPN (79 mc): Not parameterized network (trained with 79 different mass combinations)

PNN: Parameterized network (trained with 79 different mass combinations)

→ The inclusion of all signal events with parameterization leads to a significant increase in performance

Advantage of parameterized networks

- One network can be used to evaluate all mass combinations
- Enhanced capability to interpolate to mass combinations not included in training compared to NN
- Better performance compared to networks trained with one mass combination is presumable due to more statistics included in the training
 - Statistics is for different mass combination
 - More statistics leads only to increase in case of parametrisation

Impact of changes of the decay width

Narrow width:

$$\frac{\Gamma_{A/H}}{m_{A/H}} = 0.03$$

Wide width:

As predicted in 2HDM e.g. $m_A = 800 \text{ GeV}$, $\Gamma_A = 74.75 \text{ GeV}$ (for $\tan(\beta)=2$)

→ Decay width of the A boson is no longer neglectable compared to detector resolution

Impact of changes of the decay width

Training: narrow signal events

Testing: narrow and wide signal events in comparison

- → Even if we train the network with narrow signal events, the network performs nearly similar for testing with wide signal events
- → Neural network performs robust when the signal width is changed

Impact of changes of the decay width

Training: narrow and wide signal events in comparison

Testing: wide signal events

→ Using wide signal events for training does not lead to an increase in performance compared to training with narrow signals when testing with wide signal events

Summary

- Search for heavy Higgs bosons $(A \rightarrow ZH \rightarrow l\bar{l} t\bar{t})$
- Studied neutral networks for signal/background classification
- Network performance measured using ROC and AUC score
- Parameterized network trained on several mass points performs better than several individual networks
- Parameterized neural network is robust to the effects of change in the width of the A boson
 - Only slightly decrease is observable for some mass combinations

