Si-D Consortium Meeting

28.01.2025

Jochen Dingfelder (U. Bonn), Erika Garutti (U. Hamburg)

Si-D Consortium

Si-D Consortium

WP1: Position-Sensitive Monolithic Detectors

Dingfelder, Weber

WP 1.1

CMOS tracking detectors

Bonn, DESY, TU Dortmund, FH Dortmund, Frankfurt, Freiburg, Heidelberg, KIT, Siegen, Göttingen, GSI, HLL-MPG

WP 1.2

CMOS detectors for particle identification and energy measurement

HU Berlin, Heidelberg, KIT, DESY

WP2: Fast Timing

Garutti, Galatyuk

WP 2.1

LGAD sensors

Darmstadt, DESY, Frankfurt, Göttingen, Hamburg, KIT, Mainz, GSI, HLL-MPG, MPP-MPG

WP 2.2

3D sensors

Bonn, DESY, Freiburg, MPP-MPG

WP 2.3

CMOS sensors with gain layers

Freiburg, Heidelberg

WP3: System Integration and Simulation

Dierlamm, Karagounis, Masciocchi, Stroth

WP 3.1

Power management

Aachen, FH Dortmund

WP3.4

Al strips on pCVD diamond carrier

Frankfurt, GSI, Mainz

WP3.2

Optical data transmission

Wuppertal, FH Dortmund, KIT

WP3.5

Reusability by on-detector intelligence
FH Dortmund

WP3.3

2.5D/3D integration

FH Dortmund, KIT, HLL-MPG

WP3.6

Radiation hardness and simulation

Frankurt, GSI, Hamburg, Heidelberg, KIT

Cooperation partners

Funded:

Aachen

Bonn

Frankfurt

Freiburg

Göttingen

Hamburg

Heidelberg

KIT

Not funded:

HU Berlin

TU Darmstadt

FH Dortmund

TU Dortmund

Siegen

Wuppertal

Not on cooperation agreement:

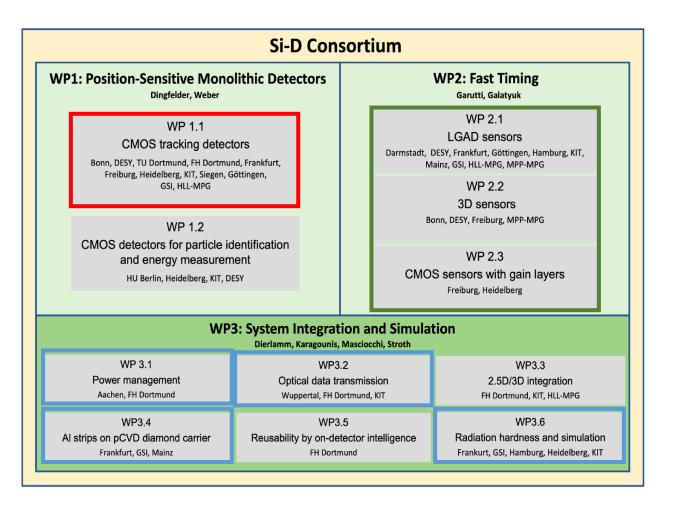
HU Berlin

TU Darmstadt

Wuppertal

Associated partners

Mainz


DESY

GSI

HLL-MPG

MPP-MPG

(Partially) funded projects

WP1.1.1 Low-cost, large-area CMOS sensors with short strips (Freiburg, FH & TU Dortmund, Bonn, DESY)
WP 1.1.2 Monolithic sensors for vertex layers

WP 1.1.2 Monolithic sensors for vertex layers (Heidelberg, KIT)

WP 1.1.3 All-silicon modules (Bonn, TU Dortmund, Göttingen, Siegen, HLL)

WP2.1.1 Fast timing layer (DESY, Hamburg, Mainz, Göttingen)

WP2.1.2 A German LGAD for 4D tracking (Hamburg, HLL, MPP, KIT)

WP2.2 3D sensors for fast timing (sensor & R/O Chip) (Freiburg, Bonn, MPP, DESY)

WP2.3 CMOS sensor with gain layer (Freiburg, Heidelberg)

WP3.1 Power management

(Aachen, FH Dortmund)

WP3.2 Optical data transmission

(KIT, Wuppertal, FH Dortmund)

WP3.6 Radiation hardness/simulation

(Frankfurt, Hamburg, Heidelberg, KIT, GSI)

WP Al strips on pCVD carriers

(Frankfurt, Mainz, GSI)

Cooperation agreement

zwischen der

Universität Heidelberg

Kooperationsvereinbarung - Projekt: R&D Detektoren: Siliziumdetektoren ("Silicon-D")

Cooperation agreement almost finished

One last disagreement related to requests from U. Frankfurt and KIT (§10 "Einbindung von Dritten") still to be solved

Deadline for getting all signatures: Feb. 15, 2025

Kooperationsvereinbarung

```
Rheinischen Friedrich-Wilhelms-Universität Bonn
vertreten durch den Rektor, dieser vertreten durch den Kanzler,
Regina-Pacis-Weg 3, 53113 Bonn
       Ausführende Stelle:
                              Ausführende Stelle: Physikalisches Institut
                              (Prof. Dr. Jochen Dingfelder)
                                                                 - im Folgenden "Universität Bonn"
                                                                     oder "Koordinator" genannt -
und
RWTH Aachen University KdöR
vertreten durch den Rektor, Templergraben 55, 52062 Aachen
       Ausführende Stelle: Lehrstuhl für Experimentalphysik I B und I. Physikalisches Institut
                            (Prof. Dr. Lutz Feld)
                                                                - im Folgenden "RWTH" genannt -
Johann Wolfgang Goethe-Universität Frankfurt am Main
vertreten durch den Präsidenten, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main
       Ausführende Stelle: Institut für Kernphysik (Prof. Dr. Joachim Stroth)
                                                                 - im Folgenden "UFRA" genannt -
und
Albert-Ludwigs-Universität Freiburg
vertreten durch die Rektorin, Prof. Dr. Kerstin Kieglstein
Friedrichstr. 39, 79098 Freiburg im Breisgau
       Ausführende Stelle: Physikalisches Institut (Prof. Dr. Karl Jakobs)
                                                                   - im Folgenden "UFR" genannt -
Georg-August-Universität Göttingen/ Georg-August-Universität Göttingen Stiftung Öffentlichen
Rechts (Stiftungsuniversität Göttingen)
vertreten durch den Präsidenten, Wilhelmsplatz 1, 37073 Göttingen
       Ausführende Stelle: II. Physikalisches Institut, Prof. Dr. Arnulf Quadt
                                                                  - im Folgenden "UGÖ" genannt -
und
Universität Hamburg
vertreten durch den Präsidenten
       Ausführende Stelle: Institut für Experimentalphysik (Prof. Dr. Erika Garutti)
                                                                  im Folgenden "UHH" genannt –
```

VID 30383 Seite 1 von 30

Expressions of Interest for detector concepts for FCC

Next Steps: Submit EOIs

The Calls

Deadline Jan 31 for submission of EOIs to PED (us)

- for editorial feedback and iteration
- and inclusion in combined FCC submission summary
 - we will write an executive summary or cover letter
 - to be circulated with all submitters
 - attach Eols in pdf format to common FCC submission
 - no template
- EOI submitters are free to chose
 - independent submission to ESU (we'd appreciate to remain posted)
 - being attached to FCC common submission (default, let us know otherwise)
 - both (let us know)

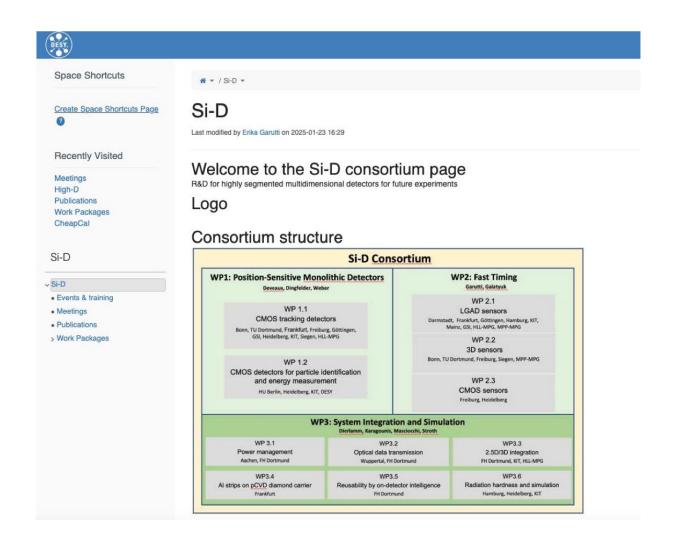
Deadline Mar 31 for submission to **ESU**

- submission of executive summary and attached EoIs (optional)
- submission of EOIs (independent or in parallel)

Content, on 2-4 pages (3-6 for concepts):

- The scope of planned activities for the next 3-5 years
- The Partners (Institutes) and their expertise
- The names of one or two contact persons
- The connection with technological activities in the DRD framework
- The engineering and simulation connections with concept groups
- References to relevant more detailed documentation of the technologies

DESY. Detector Concepts | Felix Sefkow | January 2025


From Presentation by F. Sefkow at 8th FCC workshop at CERN (Jan. 18, 2025) https://indico.cern.ch/event/1439509/

- From discussions with colleagues, the plan (so far) is to submit two EOIs
 - Vertex detector → TPSCo 65 nm (OCTOPUS)
 - Main tracker → Large-area CMOS sensors
- Deadline for EOIs (~ 2 pages) very soon: January 31st
- If someone plans to submit an EOI or would like to join the EOIs above, please let us know

Organizational issues

- Si-D web page (xWiki)
 - → see presentation from Erika

• Si-D logo?

Si-D Meeting at Terascale Detector Workshop 2025

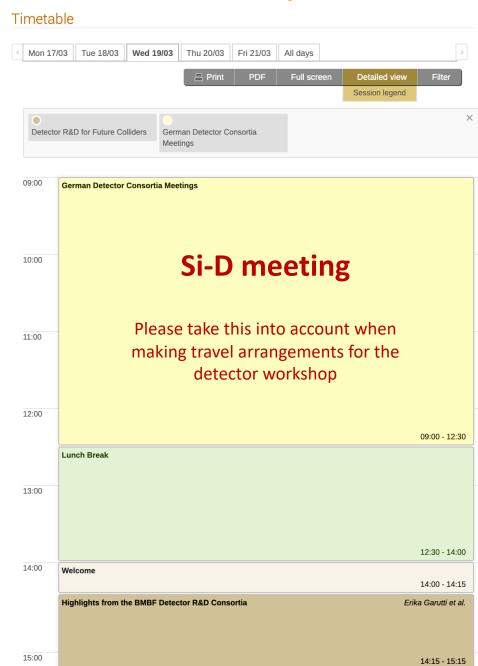
Helmholtz Alliance

PHYSICS AT THE TERASCALE

Organizing Committee

Jochen Dingfelder, Doris Eckstein, Lutz Feld, Tobias Flick, Ulrich Husemann, Oliver Kortner, Lucia Masetti, Andreas Mussgiller, Ulrich Parzefall, Hans-Christian Schultz-Coulon, Felix Sefkow, Frank Simon, Arno Strässner

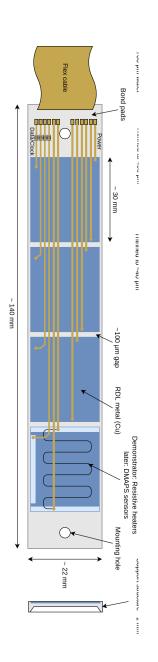
Local Organizers


Markus Ball, Florian Bernlochner, Klaus Desch, Yannick Dieter, Jochen Dingfelder, Matthias Hamer, Philip Hauer, Fabian Hügging, Jochen Kaminski, Bernhard Ketzer, Sebastian Neubert. Matthias Schott, Slavomira Stefkova, Marco Vogt

Website:

https://indico.desy.de/event/47789/

Please register by March 3, 2025



Backup

WP1: Position-sensitive monolithic detectors

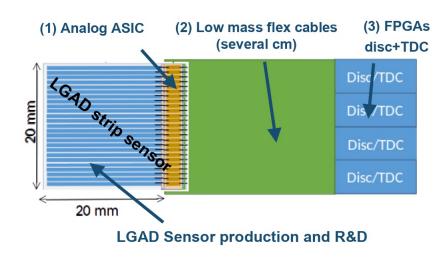
WP 1.1 CMOS tracking detectors

- CMOS strip detectors in 150 nm LFoundry technology (Freiburg, FH & TU Dortmund, Bonn, DESY)
 - Cost-effective large-area CMOS sensors (reticle stitching)
 - Design active strixel sensors: short strips, integrated FE electronics
- Monolithic sensor in 130 nm SiGe BiCMOS technology (Heidelberg, KIT)
 - \circ High rate capability (HBT \rightarrow fast amplifiers/transmitters up to 10 Gbps)
- MAPS in 65nm TPSCo technology (Heidelberg, Frankfurt, GSI)
 - Sensor characterization & qualification of stitched sensors
 - → towards large-area & bent sensors
 - Simulations for optimization of pixel design and radiation hardness
- All-silicon modules for DMAPS (Bonn, TU Dortmund, Göttingen, Siegen, HLL)
 - Ultra-light module design
 - Integration of power and readout lines directly on wafer (RDL)

WP1: Position-sensitive monolithic detectors

WP 1.2 CMOS detectors for "non-tracking" applications

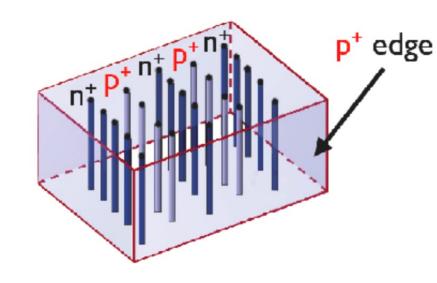
- Monolithic sensors with high dynamic range for PID (KIT, Heidelberg)
 - PID through dE/dx measurement in HVMAPS (large depleted region)
 - High-dynamic-range ADC in every pixel
 - Further design optimization to improved dynamic range
- DMAPS for digital calorimeters (HU Berlin, DESY)
 - DMAPS provide high granularity for counting tracks in shower
 - Investigation of new data reduction techniques (hit/cluster counting)
 - New sensor design with on-chip digital processing capabilities suitable for digital calorimeter readout



WP2: Fast timing

WP 2.1 LGADs

- Fast timing layer (DESY, Hamburg, Mainz, Göttingen)
 - Timepix4-based timing layer in EUDET telescope
 - Available to all groups for test-beam measurements of various LGAD layers
- German LGAD for 4D tracking (Hamburg, HLL, MPP, KIT)
 - Novel LGAD design by HLL (MARTHA)
 - Characterization of first prototypes developed for photon science
 - Goal: New optimized design for particle physics expts (timing, rad. hardness) + new readout ASIC (IHP 130nm BiCMOS)
- Large-area, low-mass 4D tracking demonstrator (TU Darmstadt, GSI, KIT)
 - Novel 4D tracking concept based on separation of FE electronics and sensor
 - Goal: Combine single modules to large-area system (100 cm²)



WP2: Fast timing

WP 2.2 3D sensors (Freiburg, Bonn, MPP, DESY)

- Novel radiation-hard 3D sensors dedicated to fast timing (based on cooperation within RD50 – CNM Barcelona, Ljubljana)
- Design of dedicated readout ASIC with high-bandwidth analog FE adapted to large sensor capacitance

WP 2.3 CMOS sensors with gain layers (Freiburg, Heidelberg)

- Improve time resolution of CMOS sensors with gain layers (→ higher S/N)
- "Implementing LGADs in CMOS technology"

WP3: System integration, radiation tolerance, and simulation

WP 3.1 Power management (Aachen, FH Dortmund)

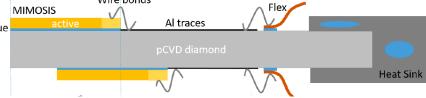
o DC-DC converters with larger conversion factors, new circuit designs to reduce power dissipation

WP 3.2 Optical data transmission (KIT, Wuppertal, FH Dortmund)

Optical transmission based on chips integrating silicon-photonics components

WP 3.3 2.5/3D integration (KIT, FH Dortmund, HLL-MPG)

- Integration of chips with active interposers (2.5D) or vertical stacking with TSVs (3D)
- Advanced wafer bonding techniques


WP 3.4 Aluminium strip lines on pCVD diamond carriers (Frankfurt, Mainz, GSI)

o Combine mechanical support, cooling, electrical connectivity in one (low-material) component

WP 3.5 Reusability by on-detector intelligence (FH Dortmund)

- Programmability/reconfigurability through radiation-hard, SEU-tolerant RISC-V CPUs & FPGAs
- On-detector chip intelligence, e.g. hardware accelerators for AI and ML

WP 3.6 Radiation hardness and simulations (Frankfurt, Hamburg, Heidelberg, KIT, GSI)

