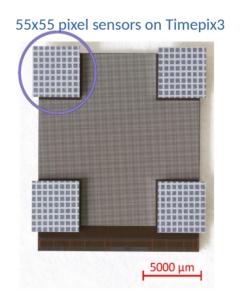


UHH projects

Si-D consortium meeting

28.01.2025

LGAD timing layer



- HEP detector R&D: dedicated beam tests for design, calibrations, commissioning, ...
- Testbeam infrastucture includes pixel detectors ("beam telescope") for reference tracks...
- Current beam telescopes: great spatial resolution ($\sigma \sim 3 \ \mu m$), but no timing
- To meet requirements of future detector test campaigns: add timing layer

Technology choice: Low Gain Avalanche Diodes Short term: read out with Timepix3 Long term: Timepix4?

First prototypes: Trench-Isolated LGADs (FBK)
a) small 2x2 pixel samples for characterisation in the lab
→ measurements with IR laser
b) 55µm pitch pixel samples to bond to Timepix3(4)

 \rightarrow first test in the DESY II testbeam end of last year

2x2 pixel samples in the lab

WP2 1

LGAD testbeam results

UΗ

in-pixel y_{track} [µm

20

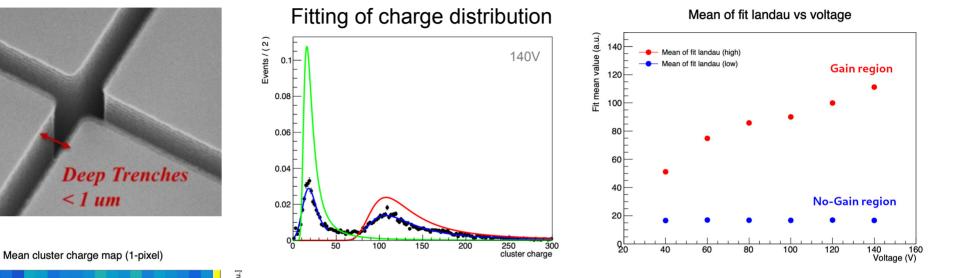
-10

-20

-10

-20

28.01.25

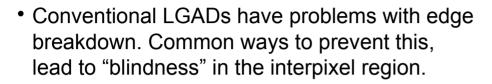

0

10

20 in-pixel x [µm]

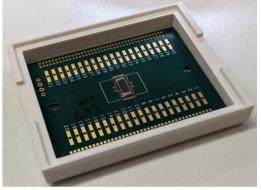
Universität Hamburg

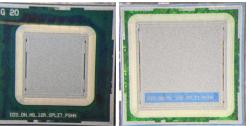
DER FORSCHUNG | DER LEHRE | DER BILDUNG



- Assume the landau on the right comes from gain region, while the landau on the left comes from no-gain region
 - Fit with Gauss_L * Landau_L + (Gauss_R * Landau_R) × factor
 - A short range between two peaks is excluded from fit to mitigate the effect from transition region
 - \Rightarrow Can determine absolute gain

3/5





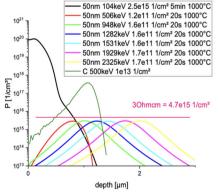
- Monolithic Array of Reach THrough Avalanche photo diodes (MARTHA): approach developed by HLL-MPG to produce pixelated LGADs
- In addition to preventing the edge breakdown with an additional n-doped layer (FDL), this approach also promises 100% fill factor

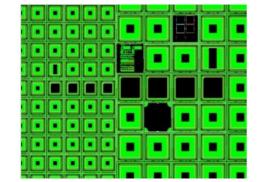
Strip sensor on PCB

First test structures of two different wafers have already been delivered. These include diodes and strip sensors.

MARTHA

 \Rightarrow The analysis of the diodes with C-V and I-V techniques has already started, a readout for the strip sensors has been designed and ordered


Diodes


Radiation hardness

- RD50 project "Defect engineered diodes mimicking the gain layer in LGADs"
- 18 differently defect engineered wafers with respect to B, O and C impurities as well as with P in compensated n++-p+ diodes

P and C implantations in compensated $n^{++}\mbox{-}p^+\mbox{-}diodes$ with 50 nm of oxide

layout design including samples for Hall measurements and diodes with fully transparent electrodes.

Expected results

- Reveal the microscopic radiation induced effects above 10^{15} n_{eq}/cm^2 and identify the reasons for losing the gain in LGADs.
- Reveal the role of O, C and P impurities in low resistivity B doped Si and of defects impacting on the gain layers in LGADs
- Detection and characterization of new defects induced by irradiation above $10^{15} n_{eq}/cm^2$ (e.g. 2^{nd} order defects)
- provide real inputs for modelling the radiation damage above 10^{16} n_{eq}/cm², allowing the development of accurate parametrization models validated on the entire range of fluences, from low to extreme;
- First samples expected in Feb. 2025 (project will continue within DRD3)

WP3.6