Software development in Astroparticle Physics

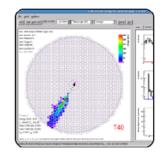
APC 13

Jakob van Santen April 2025

HELMHOLTZ

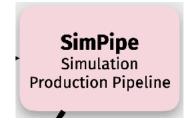
We need software to...

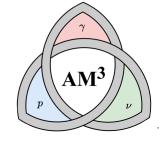
Operate the instruments we build


Analyze the data we collect

Make predictions that connect observations with physical processes

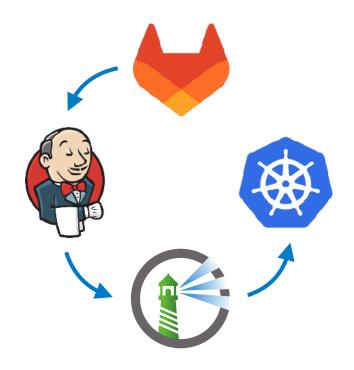
CTAO ACADA




Eventdisplay

CTAO MST Structure Control

Ampel



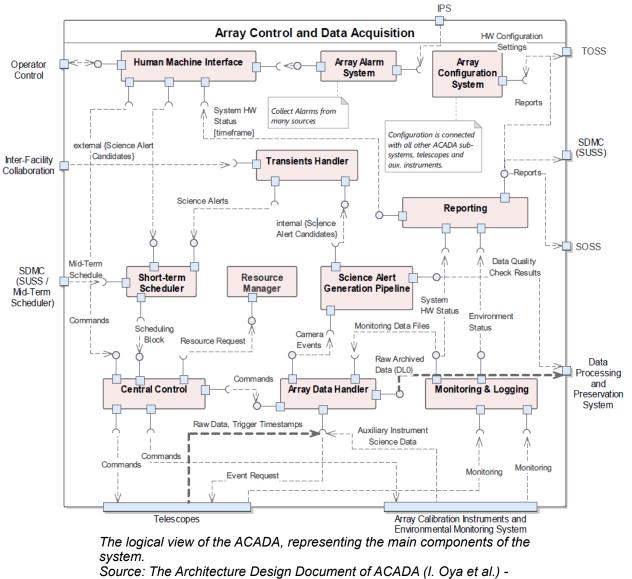
We support software development with...

Tools and services

Networking and training

CTAO experimental control

Array Control and Data Acquisition

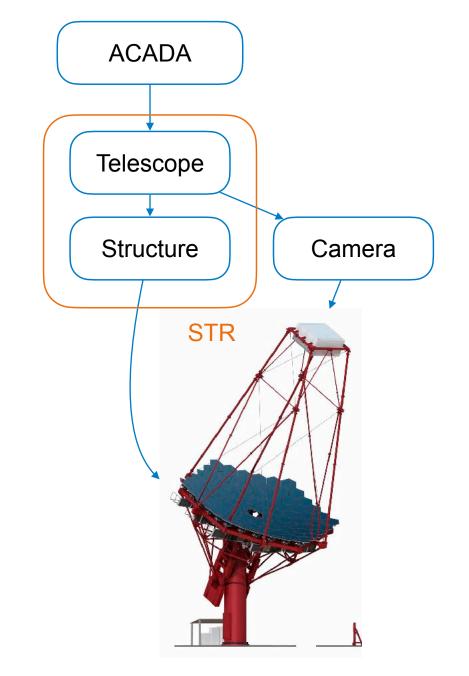

Supervisory control and data acquisition system for CTAO-North, CTAO-South

ACADA makes it possible to operate the observatory

- Many interconnected components
- Must operate reliably and safely for the lifetime of the observatory

DESY is the largest in-kind contributor to ACADA

- Resource Manager: top-level supervision
- **Central Control:** executes observation requests (pointing, data acquisition, analysis)
- Human Machine Interface: how observers control the array
- Array Configuration System: distributes configurations to components
- ~5.8 FTE (3.8 DESY, 2 external)

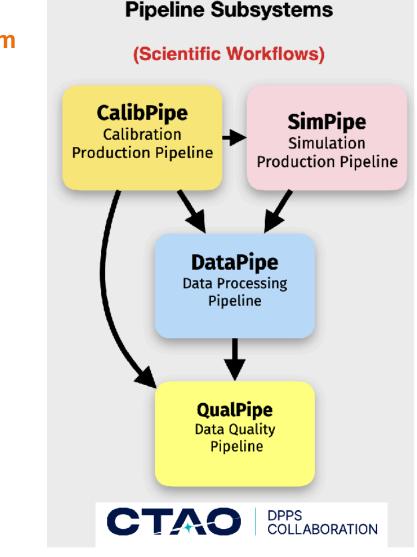


5

MST Structure Control software

DESY in-kind contribution to MST sub-project

- Control software for individual telescopes
 - ACADA sends commands
 - Structure control coordinates low-level hardware components (mount drives, mirror control, etc) to steer the telescope
 - ~20k lines of Java, Python
- Must operate safely and reliably for the lifetime of the observatory
- Must not damage people or the instrument
- ~4.5 FTE (1 permanent staff, 1 temporary staff, 0.5 external contractor, 2 postdocs)

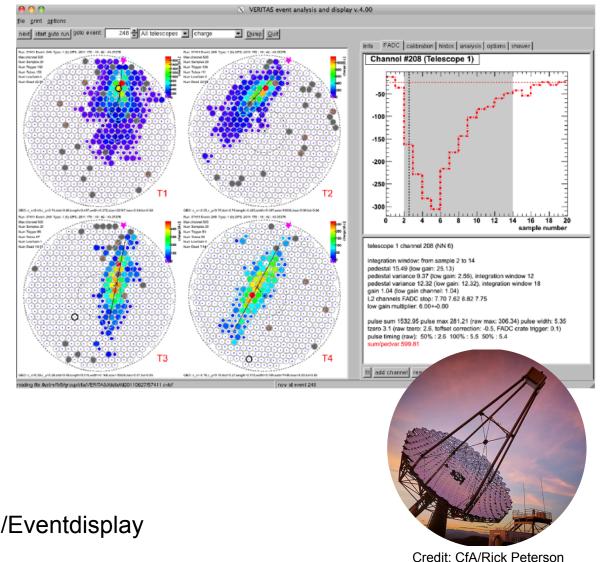

CTAO science

-

CTAO Simulation Pipeline

DESY in-kind contribution to Data Processing and Preservation System

- **Simtools**: main tool providing access to all functionality (production configuration, production manager, model parameter setting/derivation tools)
- Air shower (CORSIKA) and telescopes simulations (sim_telarray)
- Input/output tools for data access
- Developed as FAIR data pipeline in the context of Punch4NFDI
- 1-2 FTE (1 staff, 2 postdocs)
- In collaboration with MPIK Heidelberg

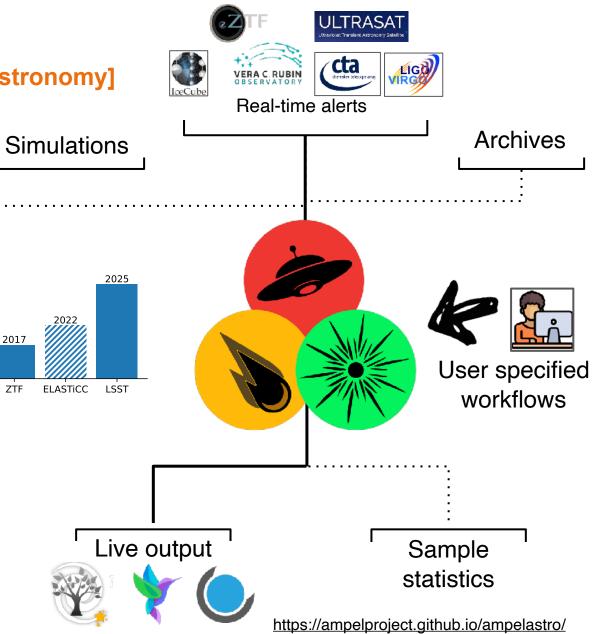

https://github.com/gammasim/simtools/

https://gitlab.cta-observatory.org/cta-computing/dpps/simpipe/simpipe/

Eventdisplay

Proven visualization and analysis tool

- Includes calibration, reconstruction, science analysis
- Well-aged software started in 2004 (C++/ROOT based); public!
- Used for pre-processing of all VERITAS observations; easy-accessible [internal] archive
- Used to analyze CTAO Simulations
 - All CTAO instrument/array optimization and sensitivity estimates based on Eventdisplay
 - CTAO-compatible converters provide bridges to CTAO Software (DL3, DL3)



https://github.com/Eventdisplay

Analysis and modeling for multi-messenger astronomy

- Developed to support SNIa cosmology and multi-messenger astronomy with ZTF. ~30k lines of Python.
- Novel in astronomy: proactive analysis, code-to-data, built-in provenance tracking
- User (scientist) specifies a workflow of self-contained units
- Framework handles the boring stuff: orchestration, storage, provenance tracking, de-duplication, etc.
- Gearing up for Rubin Observatory alerts (Q4 2025), ULTRASAT

night 101

ی 106 ع

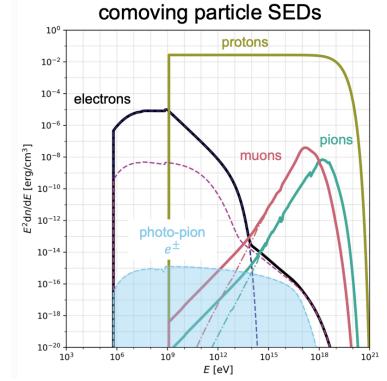
Detections |

2009

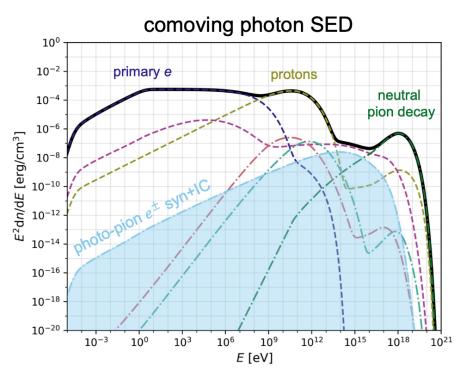
PTF

Numerical Tool: AM³ (Astrophysical Multi-Messenger Modeling)

Numerically solving the coupled PDEs for electron, proton, neutrons, neutrino and photon distributions.


$$\partial_t n_i = Q_{i,ext} + \sum_k Q_{int,k \to i} - \partial_E (\dot{E} \cdot n_i) - (\alpha_{i,esc} + \alpha_{i,adv}) n_i$$

Injection k Cooling Escape/Advection


- An Open-Source Tool for Time-Dependent Lepto-Hadronic Modeling of Astrophysical Sources
- Blazars, GRBs, TDEs, etc

(Klinger, Rudolph, Rodrigues, CY +, arXiv: 2312.13371, ApJS)

Trackable photo-pion cascade: $p\gamma \rightarrow \pi \rightarrow \mu \rightarrow e / \gamma$

- Injected protons
- pions
- muons
- primary electrons, secondary electrons
- Photon components

DESY. Multi-Messenger Emissions from Cosmic Transients | Chengchao Yuan, 2025/03/14

12¹¹

AM³ - finally public!

Astrophysical Multi-Messenger Modeling

- solve transport equations time dependent!
- for protons, electrons, photons + pions, muons, neutrinos
- Syn, IC, pair-prod., $p\gamma$, pp, Bethe-Heitler, decays,...
- speed optimized (steady state in ~10s)
- written in C++, interface to python
- used already for blazars (initially Gao++ 2017), Gao++ APJ 843 (2017) GRBs, TDEs
- including documentation!

AM³

Gao

Rudolph Rodrigues

Astrophysical Multi-Messenger Modeling

Fichet De Fedynitch Winter Yuan Clairfontaine

Software development ecosystem in AP

Services

Provided by DV and IT

GitLab

Version control, continuous integration

ACADA, MST STR, SimPipe, Ampel, AM³, (everyone)

Kubernetes

Container orchestration

SimPipe, Ampel

Nexus Artifact repository

ACADA

Harbor Container registry

ACADA, SimPipe

Jenkins *Continuous integration* ACADA

SonarQube Code quality and security

ACADA, MST STR

MinIO Object store

ACADA

Zeuthen Data and Software Seminar

~Everyone needs to write software. ~Everyone could be better at it.

- Since 2020, ~monthly talks on:
 - Useful tools
 - Fundamental techniques
 - Lessons learned
- In person and online: <u>https://indico.desy.de/</u> category/713/
- Target audience: PhD students and postdocs
- Open to all divisions
- Coordinated by neutrino, gamma groups; computer center (G. Maier, T. Murach, D. Parsons, JvS)

If loosely connected series of talks were a picture, what picture would it be? Not this one, for sure.

Software development in AP

- We build software to:
 - Operate the instruments we build
 - Analyze the data we collect
 - Make predictions that connect observations with physical processes
- "We" are mostly physicists (staff, postdocs, PhDs), some with software engineering or computer science background
- DESY supports software development in AP through
 - Services provided by DV and IT
 - Training and networking

Thank you