

https://www.desy.de/

Monolithic Active Pixel Sensors Bringing State-of-the-Art Technology to Today's & Tomorrow's Scientific Instruments

> S. Spannagel DESY-FH-ATLAS

Joint APC 13 & PRC 99 Meeting 08/04/2025, Zeuthen

Enabling Major Advances in Science

Evolution of Semiconductor Detector Technology

- Traditionally hybrid detectors or CCD sensor
- Technology improvements driven by consumer electronics
- Advanced technologies available:
- backside-illumination (BSI), stitching, 3D stacking, ...
- Scientific applications on the rise

Technology enables major advances in our fields:

FH

- Astrophysics: low-power, high efficiency sensors
- Particle Physics: high-precision, low-mass sensors for MIPs

Monolithic Active Pixel Sensors

- Low noise characteristics
- Fast read-out speeds
- Fully-integrated electronics
- Reduced mass
- Smaller signal (MIPs)
- Intricate sensor design
- Limited to silicon
- Complex R&D process:

Fully integrated

Exploring the Full Range of MAPS Applications

High-performance UV Imaging ULTRASAT FPA

Next-gen High-precision Tracking Detectors TANGERINE

Semiconductor Monte-Carlo simulations

Allpix Squared

Pixels with Picosecond Time Resolution Monolithic Digital SiPM

Megapixel Sensor for soft X-rays Percival

Radiation-hard Pixel Detector MALTA

Flexible region-ofinterest trigger TelePix2 HV-MAPS

Cost-effective large-area instrumentation CMOS Strip Sensors

S. Spannagel - Joint APC 13 & PRC 99 Meeting - Monolithic Active Pixel Sensors

S. Spannagel - Joint APC 13 & PRC 99 Meeting - Monolithic Active Pixel Sensors

The ULTARSAT Camera

At the heart of the Israeli UV space telescope

- First scientific satellite mission led by Israel
- First DESY contribution to a satellite mission .
- Unprecedentedly large field of view (204 deg²)
- First wide-field survey of transient UV sources
- Unique multi-messenger science synergies
- Kick-off in 2019, launch planned for \geq 2027
- We plan to deliver the flight camera by 2026

08/04/2025

Sensor technology

Exploiting state-of-the-art commercial technology for science instruments

The sensor

- 22.4 Mpixel, 45 mm x 45 mm active area
- Commercial 9.5 um² pixel of Tower Semiconductor
- Custom designed radiation tolerant a2d electronics
- We fly the first and only design of the sensor

Development status

- Produced 3 wafer batches, tested on wafer level and diced
- Packaged sensors are characterized for optical performance
- SEL performance confirmed in two test campaigns
- First mosaic confirmed flatness can be realized

Mission-Specific Challenge: Flatness of the focal plane

- **Requirement of 20 um p2v flatness** for entire mosaic at operational temperature
- Diced **dies came out less flat** than the wafer specifications suggested
- Flatness became significant factor for flight dies selection, lowering yield
- First mosaic proves that **flatness budget can be realized** in room temperature
- Next step is measuring mosaic's flatness at operational temperature

Mission-Specific Challenge: Infrared Glow

- Infrared light emitted from CMOS sensor's readout electronics is a known issue
- Sensor design includes metalized trench between pixel matrix and readout electronics
 - Tests at DESY proved that IR photons are effectively blocked from entering pixel matrix
- IR photons emitted out of sensor would be reflected at filter 0.55 mm above the sensors
 - Coating all non-sensitive sensor surface with Acktar to block IR photons
 - Testing of the coating process is currently ongoing

S. Spannagel - Joint APC 13 & PRC 99 Meeting - Monolithic Active Pixel Sensors

Tangerine

Towards next generation silicon detectors A Helmholtz Innovation Pool Project

S. Spannagel - Joint APC 13 & PRC 99 Meeting - Monolithic Active Pixel Sensors

The Tangerine Project

Towards the Next Generation of Silicon Detectors

Developments of Monolithic Active Pixel Sensors (MAPS) should achieve very high spatial resolution and very low mass [...] To achieve low mass in vertex and tracking detectors, thin and large area sensors will be crucial.

ECFA Detector R&D Roadmap, Research Goal DRDT 3.1

204

ECFA DRD Roadmap, 2020

ertex etector ²⁾	DRDT	2035- 2040 2040-
osition precision	3.1,3.4	
ow X/X _o	3.1,3.4	ŎŎ
ow power	3.1,3.4	ŎŎ
ligh rates	3.1,3.4	ŏ ŏ (
arge area wafers ³⁾	3.1,3.4	
Iltrafast timing ⁴⁾	3.2	i
adiation tolerance NIEL	3.3	
adiation tolerance TID	3.3	

- Explore MAPS technologies as candidates for vertex detector sensors at future lepton colliders
- Develop **simulation approach for MAPS** to allow predictive studies on sensor layouts
- **Design & characterize prototypes** with fast frontends and full digital integration

submissions supported by

Technology: 65nm CMOS Imaging Process

- International collaboration for common submissions to foundry, organized through CERN EP R&D programme
 - Strongly driven by ALICE ITS3 collaboration
 - First application in HEP
 - Two submissions received back & tested

- Goal: explore new technology in terms of
 - Performance: efficiency, ...
 - Scalability: wafer-scale sensors, stitching
 - Timing: sensor layout optimization

Investigated Chips within Tangerine

V1 MLR1

- Test chip for fast CSA front-end
- 2 x 2 pixels + test circuits

APTS

- Analog test chip
- 4 x 4 pixels
- Different pitches, layouts & frontends

V2 ER1

- FE test chip for H2M
- 2 x 2 pixels
- Improved CSA front-end

H2M

- 3 x 1.5 mm² chip area
- 64 x 16 square pixels, 35 um pitch
- Krummenacher-type CSA front-end
- Full digitization

08/04/2025

• Supports ~20 differe

• Timepix-like 4 acquisition modes:

- 8 bit ToT,
- 8 bit ToA (100 MHz clock 10 ns binning),
- photon counting (number of hits above threshold),
- triggered (binary readout after hit validated by ext. trigger)

S. Spannagel - Joint APC 13 & PRC 99 Meeting - Monolithic Active Pixel Sensors

Integrated into the Caribou DAQ system

- Re-usable hardware, firmware and software
- Supports ~20 different prototypes

08/04/2025

•

•

Hybrid-2-Monolithic: Integrated Digital-on-Top Design

Digital-on-top design workflow

Ports a hybrid pixel detector architecture

Testbeam Performance of H2M

- Measurements performed at DESY II Testbeam Facility
- Crucial facility for detector R&D

- Corryvreckan Testbeam Data Analysis Tool
- Developed & maintained at DESY
- Standard tool used by all LHC experiments, future collider studies & beyond

- H2M prototype is fully efficient at threshold 144 e-, bias -3.6 V
- Higher efficiency was expected from preliminary simulations...

Allpix Squared

The Semiconductor Detector Monte Carlo Simulation Framework

... I spare you the logos of> 35 collaborating institutes &> 70 contributors

The Allpix² Framework

- Leading Monte Carlo simulator for semiconductor detectors
- Now > 8 years of development with
 - 53 releases, current version 3.1.2
 - More than 70 code contributors
 - More than 160 citations
- Development & maintenance: DESY, Nikhef

Yearly User Workshops, soon in Amsterdam:

Combining Tools for Full End-to-End Simulations

Simulating response to minimum ionizing particle incident perpendicular to surface

A Simplistic Approach

- Applying linear electric field
 - Bias voltage -1.2 V
 - Depletion depth 10 µm
- Carrier mobility:
 - Standard Canali model (doping-independent)

- Diffusion dominant in undepleted volume
- Linear drift of charge carriers towards sensor surface, no drift to electrodes
- Large charge cloud & cluster size, significant signal contribution from substrate

holes

Realistic Simulation Requires More Information

z (μm)

- Applying **TCAD electric field**
 - Bias voltage -1.2 V
 - Depletion depth 10 µm
- Setting doping for epi & subs.
- Carrier mobility:
 - Masetti-Canali model (doping dependent)
- Recombination: combined SRH-Auger model

• Carrier drift obeys sensor features (p-wells), collection at electrodes

electronsholes

- Significant reduction of diffusion in highly-doped substrate, less charge sharing from substrate contributions
- Significant reduction of substrate contributions due to short lifetime in high-doping volume

Back to H2M: Non-Uniformity of In-Pixel Response

Confirmation by Simulation with N-Wells

1.00

0.95

0.90

0.85

0.80

0.75

0.70

1.00

0.95

0.90

Efficiency

0.80

0.75

0.70

•

Efficien

- Simulation with **realistic doping** profiles
- Includes n-well structure within p-well
- Simulation can qualitatively reproduce effect in **efficiency as well as ToA**
- Slowing-down of charge carriers traveling below large n-wells

newASTROGAM

Proposal for ESA Call for Medium-Sized Missions (M8)

newASTROGAM

- ESA science program co-funds scientific satellite missions
 - Several proposal phases, possible launch ~2041
 - newASTROGAM: Compton camera satellite concept for MeV to GeV gamma rays
 - The 'MeV gap' impairs high-energy astrophysics & multimessenger astronomy
- Investigating pixel detector for tracker
- Collaboration with KIT, NASA: AstroPix HV-MAPS prototype
- Exploring synergies in MAPS detectors between Astroparticle & Particle Physics

S. Spannagel - Joint APC 13 & PRC 99 Meeting - Monolithic Active Pixel Sensors

OCTOPUS

Optimized CMOS Technology for Precision in Ultra-thin Silicon A Project in the Framework fo the ECFA DRD3 Collaboration

S. Spannagel - Joint APC 13 & PRC 99 Meeting - Monolithic Active Pixel Sensors

26

DRD3 Project OCTOPUS

The ECFA Detector R&D Collaborations

- Addressing challenges of future particle physics experiments
- DRD3 focusing on Solid State Detectors & Technologies

OCTOPUS – A Project for a Future Vertex Detector

- DRD goal: "Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors"
- Development of a **monolithic sensor prototype**
- **Staged approach:** further refinement of performance targets after conclusion of strategy update
- Intermediate target: Development of high-resolution sensors for beam telescopes

Summary

- MAPS enable major advances in imaging & particle detection
- DESY brings state-of-the-art technology to scientific instruments
- DESY develops & maintains several tools crucial to the MAPS R&D community
- DESY has accumulated **significant experience** in MAPS development:
 - Microelectronics design & simulation
 - Sensor design & signal formation simulation
 - Testing & characterization techniques

DESY is ready to apply expertise to future projects OCTOPUS, newASTROGAM, vertex detectors...

