Hadron Collider Measurements for IACT Background Modelling

Clara Leitgeb, Humboldt University Berlin,

Andrew Taylor (DESY), Robert D. Parsons (HU Berlin), Kenneth Ragan (McGill U.), David Berge (HU Berlin & DESY), Cigdem Issever (HU Berlin & DESY)

DESY APC 13 and PRC 99, 08.04.2025

Particle Physics - Astroparticle Physics Crossover

Particle Physics Group

- Cigdem Issever (DESY/HU)
- > Clara Leitgeb (HU)

Astroparticle Group

- > Dan Parsons (HU)
- > Andrew Taylor (DESY)
- > Ken Ragan (McGill U.)
- > David Berge (DESY/HU)

© Paramount Pictures

- > Results presented at Diffraction & Low-x 2024 (proceedings)
- > Paper submitted to PRD

UNIVERSITÄ

| Hadron Collider Measurements for IACT Background Modelling | Clara Leitgeb, Humboldt University Berlin | DESY APC 13 and PRC 99, 08.04.2025

What I will cover...

Soft QCD in Air Showers

- > Cosmic proton hits atmospheric nucleus \rightarrow Particle shower
- > Soft QCD: Hadronic interaction with low momentum transfer
- > Non-perturbative \rightarrow phenomenological models

Soft OCD in Air Showers

- Cosmic proton hits atmospheric nucleus > \rightarrow Particle shower
- Soft QCD: Hadronic interaction with low > momentum transfer
- Non-perturbative \rightarrow phenomenological models
- Large differences in generator predictions: >
 - Position of shower maximum
 - Particle multiplicities

HUMBOIDT

711 BERIII

Soft QCD in Air Showers

- > Cosmic proton hits atmospheric nucleus \rightarrow Particle shower
- Soft QCD: Hadronic interaction with low momentum transfer
- > Non-perturbative \rightarrow phenomenological models
- > Large differences in generator predictions:
 - Position of shower maximum
 - Particle multiplicities
- Identification of initial cosmic particle: Large uncertainties

Soft QCD in Air Showers

- > Cosmic proton hits atmospheric nucleus \rightarrow Particle shower
- Soft QCD: Hadronic interaction with low momentum transfer
- > Non-perturbative \rightarrow phenomenological models
- > Large differences in generator predictions:
 - Position of shower maximum
 - Particle multiplicities
- Identification of initial cosmic particle: Large uncertainties

ightarrow Tuning based on accelerator data

Soft QCD in Air Showers

- > Cosmic proton hits atmospheric nucleus \rightarrow Particle shower
- Soft QCD: Hadronic interaction with low momentum transfer
- > Non-perturbative \rightarrow phenomenological models
- > Large differences in generator predictions:
 - Position of shower maximum
 - Particle multiplicities
- Identification of initial cosmic particle: Large uncertainties
- $ightarrow\,$ Tuning based on accelerator data
- ightarrow But which data?

Imaging Atmospheric Cherenkov Telescopes (IACTs)

Proton CR Rejection

- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - \rightarrow Dependent on event generator predictions
- > MVA discrimination based on image shapes
- Small fraction of proton CR events passes γ-cuts (~ 99% rejection)

Proton CR Rejection

- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - \rightarrow Dependent on event generator predictions
- > MVA discrimination based on image shapes
- Small fraction of proton CR events passes γ-cuts (~ 99% rejection)

> But: Typically $\#p / \#\gamma \sim 10^3 - 10^4!$

Proton CR Rejection

- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - \rightarrow Dependent on event generator predictions
- > MVA discrimination based on image shapes
- Small fraction of proton CR events passes γ-cuts (~ 99% rejection)

> But: Typically
$$\#p / \#\gamma \sim 10^3$$
 - 10^4

Proton CR Rejection

- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - \rightarrow Dependent on event generator predictions
- > MVA discrimination based on image shapes
- Small fraction of proton CR events passes γ-cuts (~ 99% rejection)

> But: Typically
$$\#p \,/ \, \#\gamma \sim 10^3$$
 - 10^4

Proton CR Rejection

- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - \rightarrow Dependent on event generator predictions
- > MVA discrimination based on image shapes
- Small fraction of proton CR events passes γ-cuts (~ 99% rejection)

- > But: Typically $\#p / \#\gamma \sim 10^3 10^4!$
- > Source: Production of high energy $\pi^0 \rightarrow \text{EM-shower development}$

Proton CR Rejection

- > Problem for big and diffuse sources
 - \rightarrow No side-band estimation possible
 - \rightarrow Dependent on event generator predictions
- > MVA discrimination based on image shapes
- Small fraction of proton CR events passes γ-cuts (~ 99% rejection)

- > But: Typically $\#p / \#\gamma \sim 10^3 10^4!$
- > Source: Production of high energy $\pi^0 \rightarrow \text{EM-shower development}$
- > Problem: Large uncertainties for this kind of showers!

Event Generator Predictions

High-Energy π^0 production in pp collisions

- > Dominant source for *p*-CR backgrounds
- > $\xi_{\pi^0} = \frac{E_{\pi^0}}{E_{\text{beam}}}$
- > Lab frame in this example: $1 \text{ TeV proton} \rightarrow \text{resting proton}$

Event Generator Predictions

High-Energy π^0 production in pp collisions

- > Dominant source for *p*-CR backgrounds
- > $\xi_{\pi^0} = \frac{E_{\pi^0}}{E_{\text{beam}}}$
- > Lab frame in this example: $1 \text{ TeV proton} \rightarrow \text{resting proton}$
- > $\sim 100\%$ event generator differences in predicted π^0 energy fraction at very high energies!

LHC	CR-EAS with IACTs	Transfer
-----	-------------------	----------

	LHC	CR-EAS with IACTs	Transfer
collision frame	central	fixed target	Lorentz boost
			'

	LHC	CR-EAS with IACTs	Transfer
collision frame	central	fixed target	Lorentz boost
particles	$\begin{array}{c} p \leftrightarrow p \\ p \leftrightarrow O^{16} \mbox{(2025!)} \\ p \leftrightarrow Pb^{208} \end{array}$	$\begin{array}{l} p \rightarrow N^{14} \\ p \rightarrow O^{16} \end{array}$	focus on $p \to p$ for now

	LHC	CR-EAS with IACTs	Transfer
collision frame	central	fixed target	Lorentz boost
particles	$p \leftrightarrow p$ $p \leftrightarrow O^{16}$ (2025!) $p \leftrightarrow Pb^{208}$	$\begin{array}{l} p \rightarrow N^{14} \\ p \rightarrow O^{16} \end{array}$	focus on $p \to p$ for now
typical \sqrt{s}	$\sim 13000{\rm GeV}$	$\sim 40{\rm GeV}$	scaling law

Maximal Case

 π^0 inherits \sim all energy from beam:

$$\eta_{\rm max} \approx \ln\left(\frac{\sqrt{s}}{m_{\pi}}\right)$$

Maximal Case

 π^0 inherits \sim all energy from beam:

$$\eta_{\max} \approx \ln\left(\frac{\sqrt{s}}{m_{\pi}}\right)$$

Minimal Case

HUMBOIDT

711 BERIII

 π^0 inherits 70% of the beam energy:

$$\eta_{\rm min} \approx \ln\left(\frac{0.7\,\sqrt{s}}{\sqrt{m_\pi^2 + p_{{\rm T},\pi}^2}}\right)$$

From simulations: $p_{T,\pi} \lesssim 1.5 \,\text{GeV}$

Maximal Case

 π^0 inherits \sim all energy from beam:

$$\eta_{\max} \approx \ln\left(\frac{\sqrt{s}}{m_{\pi}}\right)$$

Minimal Case

 π^0 inherits 70% of the beam energy:

$$\eta_{\rm min} \approx \ln\left(\frac{0.7\,\sqrt{s}}{\sqrt{m_\pi^2 + p_{{\rm T},\pi}^2}}\right)$$

From simulations: $p_{T,\pi} \lesssim 1.5 \,\text{GeV}$

Maximal Case

 π^0 inherits \sim all energy from beam:

$$\eta_{\max} \approx \ln\left(\frac{\sqrt{s}}{m_{\pi}}\right)$$

Minimal Case

 π^0 inherits 70% of the beam energy:

$$\eta_{\rm min} \approx \ln\left(\frac{0.7\,\sqrt{s}}{\sqrt{m_\pi^2 + p_{{\rm T},\pi}^2}}\right)$$

From simulations: $p_{\mathrm{T},\pi} \lesssim 1.5\,\mathrm{GeV}$

Maximal Case

 π^0 inherits \sim all energy from beam:

$$\eta_{\max} \approx \ln\left(\frac{\sqrt{s}}{m_{\pi}}\right)$$

Minimal Case

 π^0 inherits 70% of the beam energy:

$$\eta_{\rm min} \approx \ln\left(\frac{0.7\,\sqrt{s}}{\sqrt{m_\pi^2 + p_{{\rm T},\pi}^2}}\right)$$

From simulations: $p_{\mathrm{T},\pi} \lesssim 1.5 \,\mathrm{GeV}$

Maximal Case

 π^0 inherits \sim all energy from beam:

$$\eta_{\max} \approx \ln\left(rac{\sqrt{s}}{m_{\pi}}
ight)$$

Minimal Case

 π^0 inherits 70% of the beam energy:

$$\eta_{\rm min} \approx \ln\left(\frac{0.7\,\sqrt{s}}{\sqrt{m_\pi^2 + p_{{\rm T},\pi}^2}}\right)$$

From simulations: $p_{T,\pi} \lesssim 1.5 \,\text{GeV}$

ATLAS

- > Inner tracking detector: $|\eta| < 2.5$
- > Calorimeters: $|\eta| < 4.9$
- > Very similar coverage for CMS detector

Dane 10

- > Single arm forward detector
- > Coverage: $2 < \eta < 5$

CMS CASTOR

- > One-sided Cherenkov calorimeter
- > Coverage $-6.6 < \eta < -5.2$

CDF Miniplug

- > Operated in Tevatron $p\bar{p}$ collisions at $1.96\,{\rm TeV}$
- > Coverage: $3.6 < |\eta| < 5.1$

LHCf Detector

- > Two armed neutral particle detector at $\pm 140\,\mathrm{m}$ from IP 1
- > Coverage: $|\eta| > 8.4$

RHICf Detector

- One arm neutral particle detector at 18 m from STAR IP
- > Coverage: $\eta > 6$

- > LHCf run 2 and/or run 3 π^0 energy spectrum in bins of η
 - \rightarrow Datasets available! :)

Page 11

- > LHCf run 2 and/or run 3 π^0 energy spectrum in bins of η
 - \rightarrow Datasets available! :)
- > Lower energies:
 - LHCf HI ref run measurement of π⁰ energy spectrum in bins of η (so far only p_T)

- > LHCf run 2 and/or run 3 π^0 energy spectrum in bins of η
 - \rightarrow Datasets available! :)
- > Lower energies:
 - LHCf HI ref run measurement of π⁰ energy spectrum in bins of η (so far only p_T)
 - Future experiment at $5 < |\eta| < 8$ in $900 \,\mathrm{GeV}$ collisions?

- > LHCf run 2 and/or run 3 π^0 energy spectrum in bins of η
 - \rightarrow Datasets available! :)
- > Lower energies:
 - LHCf HI ref run measurement of π⁰ energy spectrum in bins of η (so far only p_T)
 - Future experiment at $5 < |\eta| < 8$ in $900 \,\mathrm{GeV}$ collisions?
 - RHICf dataset available! :)

- > LHCf run 2 and/or run 3 π^0 energy spectrum in bins of η
 - \rightarrow Datasets available! :)
- > Lower energies:
 - LHCf HI ref run measurement of π⁰ energy spectrum in bins of η (so far only p_T)
 - Future experiment at $5 < |\eta| < 8$ in $900 \, {\rm GeV}$ collisions?
 - RHICf dataset available! :)

In addition: Proton-Oxygen collisions in 2025! (LHCf + ATLAS-ZDC on *p*-remnant side)

Generator Predicitons for Proton-Oxygen

1 TeV p \longrightarrow resting p:

1 TeV p \longrightarrow resting O¹⁶:

Conclusion

- > Proton CRs important backgrounds for IACT analyses
- > Dominant source: Production of highly energetic π^0 in primary collision
- > Large model discrepancies explicitly in high energy end of π^0 spectrum
- > Models need to be tuned on data in analogous $\sqrt{s}-\eta$ region
- ightarrow Only LHCf and RHICf are taking data in right region but no corresponding public results so far
- \rightarrow Need π^0 energy spectra for high η bins at different $\sqrt{s}!$

Gamma-ray

Even for the strongest sources protons outnumber gamma-rays by a factor 10⁴

Obvious differences between proton and gamma-ray induced showers Proton

(c) Konrad Bernlöhr

Hadron Collider Measurements for IACT Background Modelling | Clara Leitgeb, Humboldt University Berlin | DESY APC 13 and PRC 99, 08.04.2025

Hadron Collider Measurements for IACT Background Modelling | Clara Leitgeb, Humboldt University Berlin | DESY APC 13 and PRC 99, 08.04.2025

HUMBOLDT-UNIVERSITÄT ZU BERLIN

Hadron Collider Measurements for IACT Background Modelling | Clara Leitgeb, Humboldt University Berlin | DESY APC 13 and PRC 99, 08.04.2025

η -Range of Interest for pp collisions at 13.6 TeV (LHC run 3)

The LHCf Detector

> Multi-purpose detector: ATLAS

HUMBOLDT-UNIVERSITÄT ZU BERLIN

| Hadron Collider Measurements for IACT Background Modelling | Clara Leitgeb, Humboldt University Berlin | DESY APC 13 and PRC 99, 08.04.2025 Page 22

> Multi-purpose detector: ATLAS

HUMBOLDT-UNIVERSITÄT ZU BERLIN

| Hadron Collider Measurements for IACT Background Modelling | Clara Leitgeb, Humboldt University Berlin | DESY APC 13 and PRC 99, 08.04.2025 Page 22

- > Multi-purpose detector: ATLAS
- > Forward neutral particle calorimeters: LHCf, ZDC

> Multi-purpose detector: ATLAS

HUMBOIDT.

711 DEPTIN

UNIVERSITÄT

- > Forward neutral particle calorimeters: LHCf, ZDC
- > Forward proton detectors: AFP, ALFA

| Hadron Collider Measurements for IACT Background Modelling | Clara Leitgeb, Humboldt University Berlin | DESY APC 13 and PRC 99, 08.04.2025 Page 22

Arm 1

(c) LHCf

- > Two calorimeter towers on each side of ATLAS
- > Different geometric orientations

711 BERIII

> Tungsten absorber, plastic scintillators + position sensitive layers per tower

Arm 1

(c) LHCf

- > Two calorimeter towers on each side of ATLAS
- > Different geometric orientations

ZIL BERTI

- > Tungsten absorber, plastic scintillators + position sensitive layers per tower
- > Only reached by neutral particles: n, γ , $\pi^0 \rightarrow \gamma\gamma$, $\eta^0 \rightarrow \gamma\gamma$...

Arm 1

(c) LHCf

- > Two calorimeter towers on each side of ATLAS
- > Different geometric orientations
- > Tungsten absorber, plastic scintillators + position sensitive layers per tower
- > Only reached by neutral particles: $n, \gamma, \pi^0 \rightarrow \gamma\gamma, \eta^0 \rightarrow \gamma\gamma...$

Energy resolution: < 3% (photons), ~ 40% (neutrons)
 Hadron Collider Measurements for IACT Background Modelling | Clara Leitgeb, Humboldt University Berlin | DESY APC 13 and PRC 99, 08.04.2025

Forward Photons in Run 2

> No public reconstructed π^0 energy spectra for run 2 or run 3 from LHCf yet

Forward Photons in Run 2

- No public reconstructed π⁰ energy spectra for run 2 or run 3 from LHCf yet
- Photon data analysis published in Phys. Let. B 780 (2018)

Forward Photons in Run 2

- No public reconstructed π⁰ energy spectra for run 2 or run 3 from LHCf yet
- Photon data analysis published in Phys. Let. B 780 (2018)
- Here compared to newer versions of event generator predicitons
- > Pythia 8: Using forward tune (based on other LHCf measurements than this one)

Forward Photons in Run 2

- No public reconstructed π⁰ energy spectra for run 2 or run 3 from LHCf yet
- Photon data analysis published in Phys. Let. B 780 (2018)
- Here compared to newer versions of event generator predicitons
- > Pythia 8: Using forward tune (based on other LHCf measurements than this one)
- Model discrepancies especially large at high energies

Data from Phys. Let. B 780 (2018)

| Hadron Collider Measurements for IACT Background Modelling | Clara Leitgeb, Humboldt University Berlin | DESY APC 13 and PRC 99, 08.04.2025

Plots from Phys. Let. B 780 (2018)

Generator Predictions for pO

- \rightarrow models show similar behaviour in central region (have been tuned there)
- ightarrow Huge differences between models in the entire η -spectrum

Generator Predictions for pO

Proton remnant side:

711 BERIII

Oxygen remnant side:

- > Large disagreements between generators, especially at high photon energies
- > Differences on both sides (\rightarrow data should be taken on both sides!)