







#### **PhD Status Update:**

#### Phase Noise Cancellation for Links in Networks of Optical Clocks

#### Jonas Kankel

from the "Quantum Sensing Group":

Steven Worm, Enrico Brehm, Luis Hellmich, Cigdem Issever, Lakshmi Kozhiparambil, Ullrich Schwanke, Christian Warnecke, Yang Yang

Tuesday, 3rd June 2025 — MMS Annual Meeting

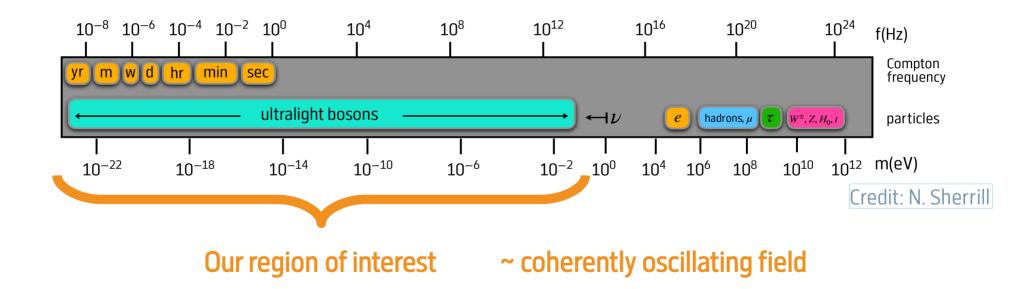


#### Motivation: Dark matter detection with atomic clocks

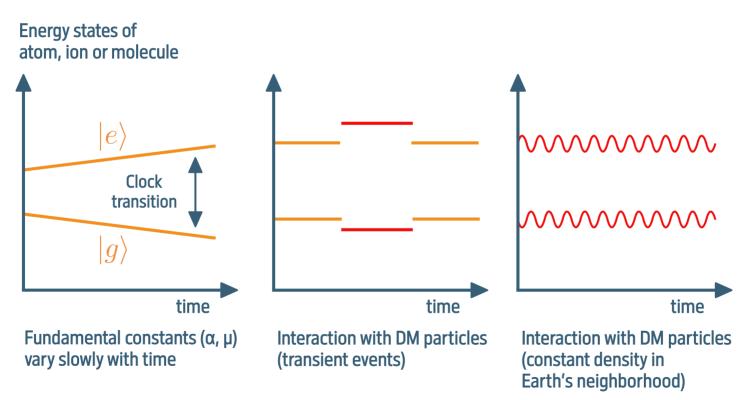
#### Phase noise cancellation (clock comparison)

### **Optical atomic clocks**

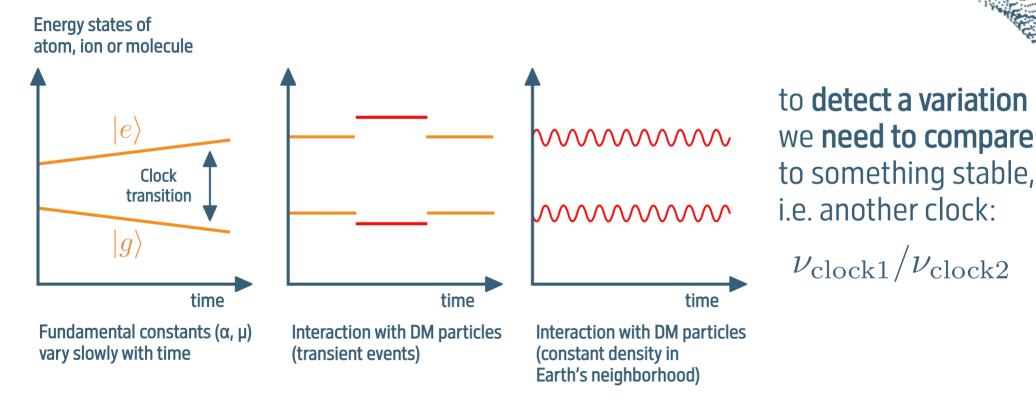
#### Clock = periodic, well-known process in nature


Currently: 1 second ≡ Ceasium **mircowave** clock 'ticking' 9 192 631 770 times

- Optical clock:
  - Offer increased precision "higher frequency (>300THz) → higher precision"
  - Excite narrow optical transition O(<1Hz) with finely tuned laser

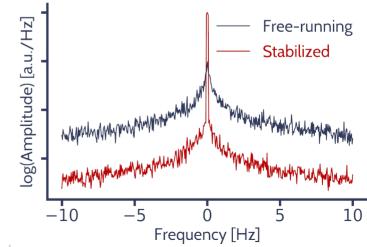






# Motivation: Ultralight dark matter and α-variation

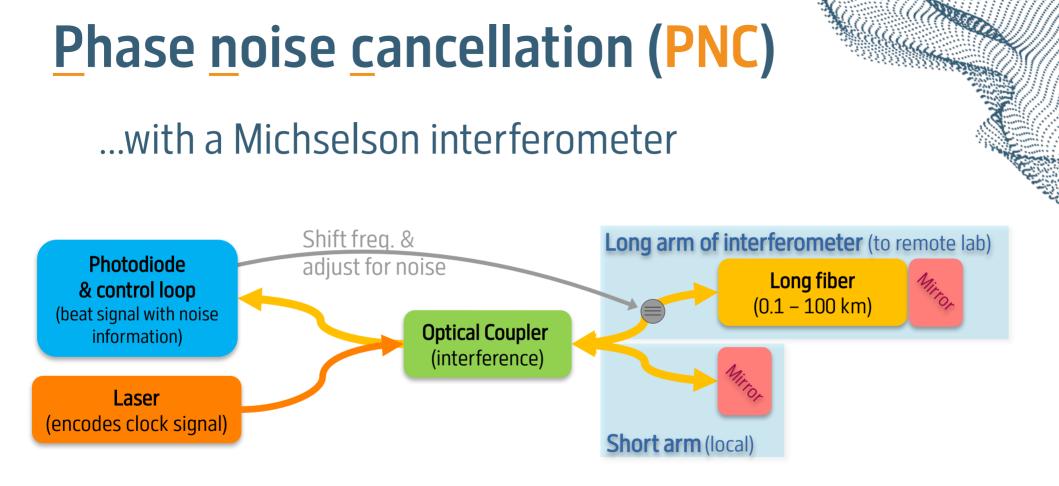


# Motivation: Ultralight dark matter and α-variation




# Motivation: Ultralight dark matter and α-variation

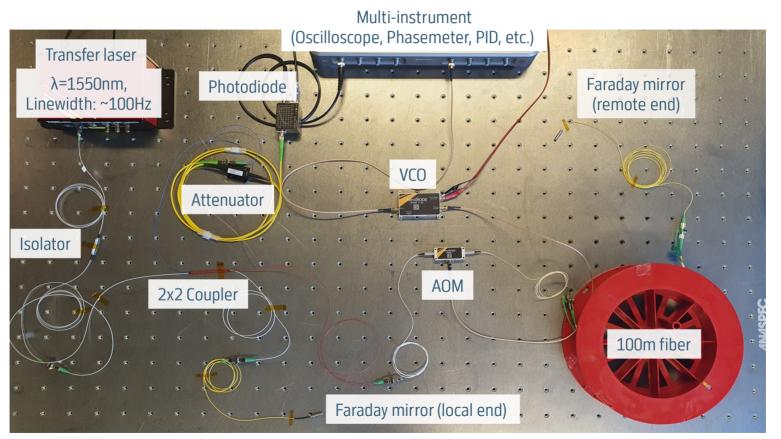



#### Phase noise from fiber transmission

- Clock comparison requires frequency transmission: usually via fiber @ 1550nm
- Vibrations, temperature fluctuations, optical components, ...
- → Phase noise ≙
  frequency instability



Jonas Kankel


Goal:



#### **PNC test setup stand**



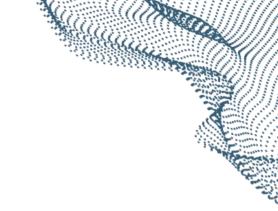
#### **PNC test setup stand**



Fiber Michelson-interferometer uses RF beat note to identify & correct for phase noise

MMS Annual Meeting 2025

Jonas Kankel


#### **Goals and open questions**

- Optimize performance
- Test longer 25km fiber connection (Physics Dept. Adlershof ↔ Telekom Labs Berlin-Mitte)
- Make packaged, reproducible version
- Prepare lab for clock
- Dark matter sensitivity estimates

#### Thanks for your attention!



#### Backup



**Backup: ULDM theory** 

**QED** Lagrangian

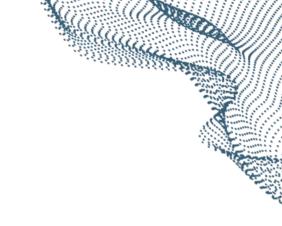
$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - q\bar{\psi}\gamma^{\mu}\psi A_{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

Lagrangian for a scalar field  $\boldsymbol{\varphi}$  coupling to photon and electron fields

$$\mathcal{L}_{\phi} = (\partial_{\mu}\phi)(\partial^{\mu}\phi) - V(\phi) - g\phi\bar{\psi}\psi + \frac{q'\phi}{4}F_{\mu\nu}F^{\mu\nu}$$

Modified QED Lagrangian

$$\mathcal{L} \supset -\frac{1}{4} \left( 1 - (\kappa \phi)^n d_{\gamma}^{(n)} \right) F_{\mu\nu} F^{\mu\nu} - m_e \left( 1 + (\kappa \phi)^n d_{m_e}^{(n)} \right) \bar{\psi} \psi$$


Finestructure constant  $\alpha$  and electron mass  $m_{\rm e}$  effectively become functions of  $\varphi$ 

$$\alpha(\phi) = \alpha_0 \left( 1 + (\kappa\phi)^n d_{\gamma}^{(n)} \right) \qquad m_e(\phi) = m_{e,0} \left( 1 + (\kappa\phi)^n d_{m_e}^{(n)} \right)$$

Coupling parameter

$$\kappa^n d_i^{(n)} = \frac{1}{\Lambda^n} \qquad \kappa = \sqrt{4\pi G} = \frac{1}{\sqrt{2}M_{\rm Pl}}$$

D. Kimball, The Search for Ultralight Bosonic Dark Matter, 2023



### Backup: <u>Highly charged ions</u> (HCIs)

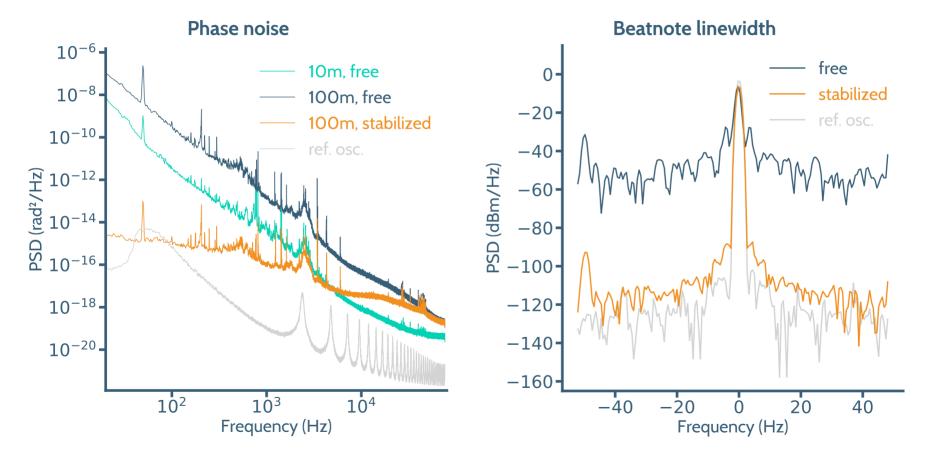
- HCIs are interesting as clock reference, due to strong binding of electrons to the nucleus:
  - Suppression of systematic effects
  - Some transitions very sensitive to α
  - However: hard to produce & handle, most transitions in XUV

|                     |                              | *                     |
|---------------------|------------------------------|-----------------------|
| Atom/Ion            | $\lambda_{	ext{transition}}$ | $\mathbf{K}^{\alpha}$ |
| $\operatorname{Sr}$ | 698  nm                      | 0.06                  |
| $Yb^+$              | 467  nm                      | -5.95                 |
| $Cf^{15+}$          | 618 nm                       | 47                    |
| $\mathrm{Cf}^{17+}$ | 485  nm                      | -43.05                |
| $^{229}$ Th         | $\sim 8 \text{ eV}$          | $\leq 10^5$           |

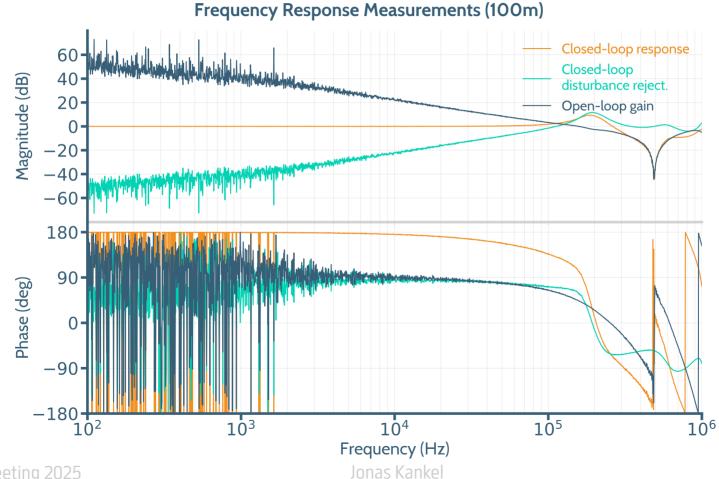
Н

C15+

Credit: QSNET.org


K<sup>α</sup>: Enhancement factor

#### Backup: HCIs's suppression of systematics

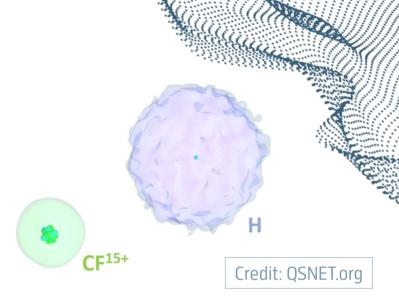

Second-order Stark shift Blackbody shift Second-order Zeeman shift Electric quadrupole shift Fine structure Hyperfine A coefficient  $\sim 1/Z_a^4$   $\sim 1/Z_a^4$ suppressed<sup>a</sup>  $\sim 1/Z_a^2$   $\sim Z^2 Z_a^3/(Z_{ion} + 1)$   $\sim Z Z_a^3/(Z_{ion} + 1)$ 

Berengut et al. 2012

#### Backup: PNC test setup - Performance



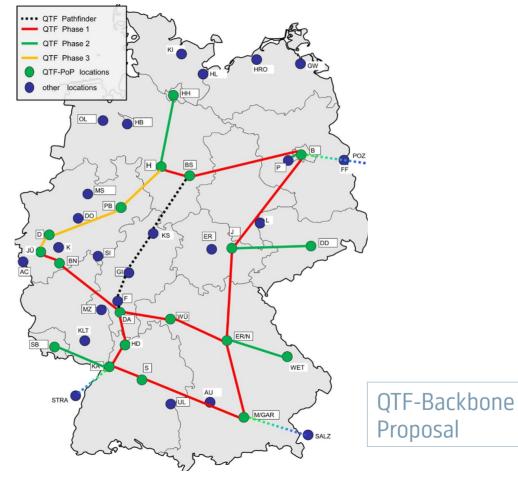
#### **Backup: Loop characterization**




MMS Annual Meeting 2025

## Highly charged ions (HCIs)

- HCIs are interesting as clock reference, due to strong binding of electrons to the nucleus:
  - Suppression of systematic effects
  - Some transitions very sensitive to α
  - However: hard to produce & handle, most transitions in XUV


| Atom/Ion            | $\lambda_{	ext{transition}}$ | $\mathbf{K}^{\alpha}$ |
|---------------------|------------------------------|-----------------------|
| $\operatorname{Sr}$ | 698  nm                      | 0.06                  |
| $Yb^+$              | 467  nm                      | -5.95                 |
| $Cf^{15+}$          | 618 nm                       | 47                    |
| $Cf^{17+}$          | 485 nm                       | -43.05                |
| $^{229}$ Th         | $\sim 8 \text{ eV}$          | $\leq 10^{5}$         |
|                     |                              |                       |



K<sup>α</sup>: Enhancement factor

### Backup: QTF-Backbone

 QTF: Quantum channel, time & frequency distribution



#### **Backup: QSNET**

|                                                                                                   | Clock                      | Κα    | Кμ  |
|---------------------------------------------------------------------------------------------------|----------------------------|-------|-----|
| UoB<br>Cf - α<br>ICL<br>CaF - μ<br>Yb <sup>+</sup> - α<br>Cs - α & μ<br>European<br>fibre network | Yb⁺(467 nm)                | -5.95 | 0   |
|                                                                                                   | Sr (698 nm)                | 0.06  | 0   |
|                                                                                                   | Cs (32.6 mm)               | 2.83  | 1   |
|                                                                                                   | CaF (17 μm)                | 0     | 0.5 |
|                                                                                                   | $N_2^+$ (2.31 µm)          | 0     | 0.5 |
|                                                                                                   | Cf <sup>15+</sup> (618 nm) | 47    | 0   |
|                                                                                                   | Cf <sup>17+</sup> (485 nm) | -43.5 | 0   |

Barontini et al., 2022