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Abstract
The detection of light dark matter (DM) is a longstanding challenge in terrestrial experiments. High-

intensity facility of an intense electromagnetic field may provide a plausible strategy to study strong-field

particle physics and search for light DM. In this work, we propose to search for light DM particle through

the nonlinear Compton scattering in the presence of a high-intense laser field. An ultra-relativistic electron

beam collides with an intense laser pulse of a number of optical photons and then decays to a pair of

DM particles. We take into account the Dirac-type fermionic DM in leptophilic scenario and the DM-

electron interactions in the framework of effective field theory. The decay rates of electron to a DM pair

are calculated for effective DM operators of different bilinear products. We show the sensitivities of laser

induced Compton scattering to the effective cutoff scale for DM lighter than 1 MeV and compare with direct

detection experiments.
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I. INTRODUCTION

A number of cosmological and astrophysical observations clearly support the existence of dark
matter (DM) in the universe [1–3]. While it is motivated by its gravitational effects, the DM can
also be manifested by its weak but non-vanishing couplings to the Standard Model (SM) parti-
cles [4, 5]. Because of the sizable relic abundance of DM, its annihilation in high-density regions
of the universe can indirectly induce observational anomalous signals of lepton or photon [6–10].
Various detection strategies have also been proposed to search for DM in direct detection [11]
and collider experiments [12–14]. However, the microscopic properties of DM still remain un-
known and DM particle has not been observed in the terrestrial facilities. The direct detection
experiments are normally not sensitive to DM lighter than 1 MeV due to the limitation of recoil
energy threshold. The high-intensity facility with intense electromagnetic field may compensate
the shortcomings of other experiments for the detection of new physics beyond the SM [15–24].

The laser of an intense electromagnetic field strength provides an essential tool for exploring
strong-field particle physics in the high-intensity frontier. In 1951, J. Schwinger showed that
at field strength of E = m2

e/e ∼ 1.32 × 1018 V/m, the vacuum of quantum electrodynamics
(QED) becomes unstable and can decay into a pair of electron and position [25]. This so-called
Schwinger field is of particular interest because it exhibits non-perturbative QED. The vacuum
decay probability yields zero to all orders of perturbative theory. In 1990s, the SLAC experiments
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observed two strong-field processes through the interaction of an ultra-relativistic electron beam
with a terawatt laser pulse [26, 27]. Under the illumination of a high-intense laser field, an electron
can absorb the energy of multiple laser photons and then decay into a high-energy photon. This
high-energy photon can further collide with the laser photons and decay to a pair of electron and
positron. They are the so-called nonlinear Compton scattering

e− + laser → e− + γ , (1)

and the nonlinear Breit-Wheeler pair production

γ + laser → e+ + e− . (2)

The precision measurement of these two processes catalyzes the studies of strong-field QED and
nonlinear QED (see Greiner et al.’s textbook [28] and recent reviews in Refs. [29, 30]). When
the strength of the laser electromagnetic plane wave is intense enough, the nonlinear contributions
from the higher-order terms in the scattering would become important. The benefit of this absorp-
tion of more than one photon is that the resultant scattering cross section is much more sizable (in
unit of barn) than those of the usual QED processes in beam collisions.

In this work, we propose to search for DM using laser assisted Compton scattering process. A
high-energy electron beam collides with an intense laser pulse of a number of optical photons and
then decays to a pair of DM particles

e− + laser → e− + χ+ χ , (3)

where we assume Dirac-type fermionic DM denoted by χ and its anti-particle χ. Unlike the QED
Compton scattering, the final states in our case is composed of one single visible electron and the
missing transverse momentum carried away by the DM pair. It is analogous to the characteristic
mono-electron signature at colliders [31–34]. We consider the leptophilic DM scenario in an
effective field theory (EFT) framework [35]. The DM-electron interactions are parametrized by
the effective high-dimensional operators and the ultraviolet (UV) cutoff scale. The scattering
production of fermionic DM pair will be calculated for effective DM operators of different bilinear
products. We will show the sensitivities of laser induced Compton scattering to the effective cutoff
scale as a function of the DM mass and compare with direct detection experiments.

This paper is organized as follows. In Sec. II, we review the EFT operators for DM-electron
interaction and the characteristics of laser induced Compton scattering to DM pair. We present
the detailed calculations of the relevant Compton scattering for different EFT operators in Sec. III.
The results of sensitivity reach for the UV cutoff scale are then shown in Sec. IV. Our conclusions
are drawn in Sec. V.

II. DM-ELECTRON EFT AND LASER INDUCED SCATTERING

In this section, based on DM-electron EFT, we consider the method of laser induced Compton
scattering and show the characteristics of the scattering to Dirac-type DM particle pair in intense
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laser field

e−(p) + nω(k) → e−(p′) + χ(pχ) + χ(p′χ) , (4)

where n denotes the number of optical photons with energy ω. In principle, this process can be
initiated by some mediator which connects the DM pair and electron. In such case, the production
rates are dominantly determined by the mass of the mediator due to resonant generation. The
experimental constraints are then given with respect to a combination of the mass parameter and
the couplings between the mediator and electron as well as the DM. In this work, we do not aim to
perform an analysis based on a UV complete model. In contrast, for simplicity, we assume that the
mediator is heavy enough such that it can be integrated out. The interaction between the electron
and the fermionic DM can be described by low-energy effective operators. Below we review such
effective field theory of DM and study their phenomenology in terms of the nonlinear Compton
scattering.

A. DM-electron effective operators

The interaction between DM χ and ordinary matter is described by the effective Lagrangian

Lχ =
∑
i

1

Λdi−4
i

Oi , (5)

where di is the mass dimension of the effective operator Oi. We take into account the following
EFT operators of the Dirac-type fermionic DM particles interacting with a photon or a pair of
electron and positron [35]

OMD = (χσµνχ)Fµν , OED = (χσµνiγ5χ)Fµν , (6)

OSS = (ee) (χχ) , OSP = (ee) (χiγ5χ) , (7)

OPS = (eiγ5e) (χχ) , OPP = (eiγ5e) (χiγ5χ) , (8)

OV V = (eγµe) (χγµχ) , OV A = (eγµe) (χγµγ5χ) , (9)

OAV = (eγµγ5e) (χγµχ) , OAA = (eγµγ5e) (χγµγ5χ) . (10)

The magnetic and electric dipole operators OMD and OED are dimension-5 operators with Fµν

being the electromagnetic field strength tensor. Other dimension-6 operators are formed by the
product of scalar and pseudo-scalar currents, or vector and axial-vector currents. We omit the
tensor operators which cannot be generated by tree-level UV models.

The validity of above effective operators holds as long as the momentum transfer or the center-
of-mass (c.m.) energy is much smaller than the energy scales Λi. In our case, the c.m. energy
is always less than electron mass. Hence, the EFT description is valid if the energy scales are
in the range of Λi ≫ 1 MeV. Furthermore, the scattering can happen only for the DM with
mass below the electron mass, i.e., mχ ≲ me. It thus provides a complementary strategy of light
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DM detection to direct detection experiments [11]. Moreover, in terms of mono-X searches, the
validity of the EFT approach is a longstanding problem at the high-energy hadron colliders [36].
At e+e− colliders, the obtained lower limit of UV energy scale is larger than their c.m. energy but
not large enough to ensure the EFT validity [37, 38]. We will not compare our results with the
collider limits.

B. The electron’s Volkov state wave function

In the presence of an electromagnetic potential, the wave function of a relativistic fermion of
mass m is subjected to the following Dirac equation

(i/∂ −Qe /A−m)ψ(x) = 0 , (11)

where e is the unit of electric charge and Q is the charge operator (e.g. Qψ = −ψ for electron).
We assume that the electromagnetic potential Aµ(x) of the incoming laser field moves along the
direction specified by the wave vector k which satisfies the on-shell condition k2 = 0. To be
specific, the laser wave is assumed to be circularly polarized and monochromatic [19]. In the
Lorentz gauge k · A = 0, the vector potential Aµ can be described as

Aµ(x) = a (εµ1 cosφ+ εµ2 sinφ) , (12)

where the phase φ is defined as φ ≡ k ·x = ωt−k ·x with ω being the frequency of the incoming
laser, ε1 and ε2 are the two mutually orthogonal polarization vectors, and a is the amplitude of the
laser field which is related to the strength of a laser beam by the power density

I =
1

4π
a2ω2 . (13)

The above model of a very short or highly focused light pulses may be oversimplified, but the
essential properties of the laser field are properly taken into account. In this work, we will use this
simplified model to study the laser induced Compton scattering and the production of DM pair.
In a realistic experimental setup, the high-intensity laser would emit the photons in pulses. One
can introduce a function f(x) for the pulse shape describing the spatial dependence of the vector
potential in the parameterization of Aµ [18].

Furthermore, since the laser field is taken as a classical external potential, the higher-order
(nonlinear) effects of the electron decay in the laser field have to be included. This can be ad-
dressed automatically by employing the Volkov state [39] which is the exact solution of the Dirac
equation in presence of a circularly polarized laser field. For a Dirac particle having momentum
p, the Volkov wave function is given as

ψp =

[
1− e

2k · p
/k /A(φ)

]
u(p)e−iΦ(φ)−ip·x , (14)
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where u(p) is the usual Dirac wave function for free particle, and Φ(φ) is a phase factor depending
on φ

Φ(φ) =

∫ φ=k·x

0

dφ′
(
−eA(φ

′) · p
k · p

− e2A2(φ′)

2k · p

)
. (15)

On the other hand, due to the direct coupling between the DM and photon in the dipole effective
operators given in Eq. (6), the intense laser can potentially induce nonlinear effects on the DM
field. As a result, the non-perturbative solution of the DM in laser field has to be solved. However,
such effects are scaled by the factor ea/Λ. We will show that the scale factor is considerably small,
ea/Λ ∼ 10−7. Hence, the non-perturbative effects in the dipole operators can be safely neglected.

C. Formalism of laser-induced scattering

One of the essential properties of the laser induced processes is the position dependence. In
this case, it is more convenient to calculate the scattering matrix in the position representation.
Since the potential is assumed to depend on the space-time coordinates x only through the scalar
product φ = k · x, i.e., Aµ(φ) = Aµ(k · x), the scattering matrix element can be written as

Sfi =

∫
d4x e−i(q−q′−pχ−p′χ)·xM(φ) eiΦ̃

′(φ) , (16)

where q = p+ e2a2

2k·pk and q′ = p′ + e2a2

2k·p′k are the effective momenta of the incoming and outgoing
electrons in the laser field, respectively, pχ and p′χ are the momenta of the outgoing DM particle
and its anti-particle, respectively, M(φ) is the corresponding amplitude, and eiΦ̃

′
(φ) is the possible

phase factor. After employing the Volkov wave functions for both the incoming and outgoing
electrons, for dimension-6 operators, one can easily find that the amplitude is given as

M =
1

Λ2
XX′

[
u(p′)

(
1− e /A/k

2k · p′

)
ΓX

(
1− e/k /A

2k · p

)
u(p)

][
uχ(pχ)ΓX′v(p′χ)

]
, (17)

where ΓX and ΓX′ are the possible Lorentz structures of the effective operators. For dimension-5
operators, the amplitude reads as

M =
−2(pχ + p′χ)ν

(pχ + p′χ)
2

1

ΛX′

[
u(p′)

(
1− e /A/k

2k · p′

)
eγµ

(
1− e/k /A

2k · p

)
u(p)

][
uχ(pχ)ΓX′v(p′χ)

]
,(18)

where ΓX′ = σµν and ΛX′ = ΛMD or ΛED. The corresponding phase is given as

Φ̃′ = ea

(
ε1 · p
k · p

− ε1 · p′

k · p′

)
sinφ− ea

(
ε2 · p
k · p

− ε2 · p′

k · p′

)
cosφ . (19)

We then define an “effective momentum” for the incoming electron as

qµ = pµ +
e2a2

2k · p
kµ . (20)
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Similarly, the momenta of the final electron in the laser field can be obtained with the substitution
p→ p′ and q → q′. By introducing the following transverse momentum (Q · k = 0)

Q =
q′

k · q′
− q

k · q
, (21)

the phase can be written as

Φ̃′ = ea (−ε1 ·Q sinφ+ ε2 ·Q cosφ) = −z sin (φ− φ0) , (22)

where

z = ea

√
(ε1 ·Q)2 + (ε2 ·Q)2 = ea

√
−Q2 , (23)

cosφ0 = ea
ε1 ·Q
z

, (24)

sinφ0 = ea
ε2 ·Q
z

. (25)

The phase factor eiΦ̃
′ is a periodic function of the variable φ and thus can be expanded into a

discrete Fourier series. We have the following ansatz

e−iz sin(φ−φ0) =
∞∑

n=−∞

Bn(z)e
−inφ (26)

where Bn(z) = Jn(z)e
inφ0 with Jn(z) being the Bessel function. With the help of the above

transformations, one can easily find that the S-matrix element can be expanded as

Sfi =
∞∑

n=−∞

∫
d4x e−i(q+nk−q′−pχ−p′χ)·xMn(z) , (27)

with the n-th amplitude given as

Mn(z) = Bn(z)M(z) . (28)

Usually, the coordinate dependence of the amplitude M(z), and hence the n-th amplitude Mn(z),
can be eliminated. As a result, the space-time integration now simply reduces to∫

d4x e−i(q+nk−q′−pχ−p′χ)·x = (2π)4δ4
(
q + nk − q′ − pχ − p′χ

)
. (29)

Clearly, the summation variable n can be viewed as the (net) number of laser photons which are
absorbed (n > 0) or emitted (n < 0) in the process. This is an interesting result because the
electromagnetic wave was originally introduced as a classical external field. The discretization
of four-momentum evident in Eq. (29) arises from the periodicity of the plane wave in space and
time.

7



Since the kinematics of the outgoing DM fermions, χ and χ̄, can never be measured in prac-
tice, their relative motion should be integrated out. This can be done by introducing a fictitious
momentum k′ = pχ + p′χ. The corresponding 3-body phase space is decomposed as follows

dΠ3 =

∫
dm2

k′

2π
dΠ2(q + nk − q′ − k′)dΠ2(k

′ − pχ − p′χ) , (30)

where m2
k′ = k′2 ≥ 4m2

χ, and Π2 is the standard 2-body phase space. Here and after we will
use dΠP,n and dΠD,n to denote the phase space of the production dΠ2(q + nk − q′ − k′) and the
decay dΠ2(k

′−pχ−p′χ), respectively. For convenience, we introduce following Lorentz invariant
parameter to simplify the above 2-body phase space

u =
k · q
2k · q′

. (31)

In term of the parameter u, the production 2-body phase space is given by

dΠP,n =
1

32π2u2
dudϕ∗

n , (32)

with ϕ∗
n being azimuthal angle of the momentum k′. Further details of our parameterization of

the production phase space can be found in Ref. [24]. The amplitude can be calculated in the rest
frames of q+nk and k′, respectively. Since it involves different Lorentz structures, we study them
separately in following section.

III. CALCULATION OF LASER INDUCED COMPTON SCATTERING TO DM PAIR

In this section, we calculate the laser induced Compton scattering to DM pair in details. Our
calculations are categorized based on the effective operators of different bilinear products. For
convenience, we adopt the method of helicity amplitude in terms of the density matrices of pro-
duction and decay.

A. scalar and pseudo-scalar bilinears

In cases of the operators OSS , OSP , OPS and OPP made of scalar and pseudo-scalar bilinears
(X,X ′ = S, P ), the amplitude can be decomposed as follows

MXX′ =
1

Λ2
XX′

MP
XMD

X′ , (33)

with

MP
X =

[
u(p′)

(
1− e /A/k

2k · p′

)
ΓX

(
1− e/k /A

2k · p

)
u(p)

]
, (34)
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MD
X′ =

[
uχ(pχ)ΓX′v(p′χ)

]
. (35)

Here the amplitudes MP
X and MD

X′ describe the production and decay of a fictitious spin-0 par-
ticle with a momentum k′, respectively, and both of them are Lorentz invariant. Since only the
production amplitude MP

X depends on the variable z, the n-th amplitude can be written as

MXX′,n =
1

Λ2
XX′

MP
X,nMD

X′ , (36)

where MP
X,n = BnMP

X . It should be noted that the amplitude MD
X′ is also n-dependent as

the outgoing momenta pχ and p′χ are subjected to the absorption strength of the incoming laser.
It becomes clear when we interpret the n-th amplitude as the one of absorbing n photons from
the laser field. However, here and after, n-dependence of the decay amplitude MD

X′ is always
suppressed, unless its explicit expression is shown.

The total density matrix elements are given as

ρXX′,n =
1

Λ4
XX′

PX,nDX′ , (37)

where

PX,n =
∣∣MP

X,n

∣∣2 = 1

2
MP

X,n

(
MP

X,n

)†
, (38)

DX′ =
∣∣MD

X′

∣∣2 = ∑
λχ,λχ̄

MD
X′

(
MD

X′

)†
. (39)

Here the spin of the incoming electron is averaged, and the spin of the outgoing dark fermions has
been summed over. The total decay width is then given as

ΓXX′ =
1

Λ4
XX′

∞∑
n=−∞

1

2QLab

∫
dΠP,n

∫
dm2

k′

2π
PX,n DX′,n , (40)

where QLab is the energy of the incoming dressed electron in the laboratory frame, and DX′ =∫
dΠD,nDX′ is the averaged decay density matrix over the phase space. For the production density

matrix, after tedious but straightforward calculations, we arrive at the following results

PS,n = 4

(
m2

e −
1

4
m2

k′

)
J2
n − 2e2a2u

(
1− 1

2u

)2

Jn , (41)

PP,n = −m2
k′J

2
n − 2e2a2u

(
1− 1

2u

)2

Jn , (42)

with
Jn = J2

n − 1

2

(
J2
n−1 + J2

n+1

)
. (43)
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In either case, there are terms explicitly proportional to a2 for pure nonlinear absorption of the laser
field. One can also see that there is an additional contribution proportional to m2

eJ
2
n in the scalar

production density matrix. For both scalar and pseudo-scalar operators, the non-trivial amplitudes
are given by the spinors with chiral-flipping combinations, i.e., “RL” and “LR”, whose amplitudes
are proportional to the electron mass. However, while the chiral-flipping amplitude for the scalar
operator adds constructively, the one for the pseudo-scalar operator adds deconstructively. As a
result, the scalar production density matrix receives an additional contribution proportional to m2

e.
The decay density matrices can be easily calculated. After integrating out the 2-body phase space
of the outgoing DM fermions χ and χ, the averaged decay density matrices are given by

DS =
1

4π
m2

k′β
3
χ , (44)

DP =
1

4π
m2

k′βχ , (45)

where βχ =
√

1− 4m2
χ/m

2
k′ with mk′ ≥ 2mχ is the velocity of the outgoing fermionic DM.

Similar to the production case, the decay amplitudes are also constructively and deconstructively
added for the scalar and pseudo-scalar operator, respectively. As a result, the scalar operator can
induce only P -wave decay, in contrast the leading order nontrivial decay amplitude for the pseudo-
scalar operator is given by the S-wave. Consequently, the averaged decay density matrices have
difference power dependencies on the velocity βχ.

Because of the non-trivial dependence on the invariant mass mk′ , it is difficult to obtain the
analytical expressions of the total decay width. Here we discuss their physical properties with
the help of numerical integration. We take the same experimental setup as the Laser Und XFEL
Experiment (LUXE) [40], in which the incoming electron beam has an energy of ELab = 14

GeV and a laser beam of green light with ωLab = 2.35 eV as a benchmark to study the physical
properties 1.

Fig. 1 shows the decay widths of the laser dressed electron for the operator OSS (top-left), OSP

(top-left), OPS (bottom-left) and OPP (bottom-right) as a function of the laser intensity parameter

η ≡ ea

me

=
eε0

ωLabme

, (46)

where ωLab denotes the laser beam energy in the laboratory frame. The results are shown for a
fiducial energy scalar Λ = 10 GeV, and a DM mass mχ = 0 GeV (green curves) or mχ = 0.1me

(blue curves). The total contributions are shown by solid curves, and the contributions from the
n-th branch of laser photon are shown by long-dashed (n = 1), long-dash-dotted (n = 2), dashed
(n = 3), dash-dotted (n = 4), big dotted (n = 5) and dotted (n = 6) curves. One can clearly
see that for small values of η, the dominant contribution is given by the n = 1 branch. The
contributions of the higher-order absorption grow quickly as increasing η, and reach a maximum

1 Note that we omit the small scattering angle θLab = 17◦ and assume the two beams are head-on colliding in our

calculation.
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around η ∼ 2. For every branch, there is a maximum for the intensity parameter η

ηmax
n =

[(2nωLab(ELab + cos θLabpLab)− 4m2
χ

4memχ

)2

− 1
]1/2

, pLab =
√
E2

Lab −m2
e , (47)

beyond which there is no enough phase space for the decay. This is also the reason why the decay
width drops for larger η and there exhibits a kinematic suppression in the plot. In case of massless
DM, i.e.,mχ = 0 GeV, the total decay width can be enhanced by more than one order of magnitude
due to the higher-order contribution. One can also see that, for heavier DM χ, the higher-order
contributions for given intensity parameter become more important.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 Totalmχ

0GeV
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FIG. 1. The total decay widths of the laser dressed electron for the operator OSS (top-left), OSP (top-

right), OPS (bottom-left) and OPP (bottom-right) as a function of laser intensity parameter η. The results

are shown for a fiducial energy scalar Λ = 10 GeV, and a DM mass mχ = 0 GeV (green curves) and

mχ = 0.1me (blue curves). The total contributions are shown by solid curves, while the contributions up

to n = 6 are also shown by non-solid curves. See the legend on top for the label details.

Fig. 2 shows the normalized distributions of the total decay width with respect to the energy of
the outgoing electron for the DM massmχ = 0 GeV (green curves) andmχ = 0.1me (blue curves).
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The laser intensity parameter has been set as the typical value of the SLAC experiment [27], i.e.,
η = 0.3. The total contributions up to n = 6 are shown by solid curves, while the contributions
of each branch are also shown by non-solid curves. From Fig. 2 one can see that, even for such
a typical intensity parameter, the higher-order absorption channels can also give a comparable
contribution to the n = 1 branch in high-energy region.
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FIG. 2. The normalized distribution of the decay width with respect to the energy of the outgoing electron

for the operator OSS (top-left), OSP (top-right), OPS (bottom-left) and OPP (bottom-right), as labeled in

Fig. 1.

One can also find that the higher-order contributions are dominant at the low-energy region.
Even through the laser dressed electron can be at rest in the rest frame of q + nk, it is always
moving in the laboratory frame. Hence, the energy of the outgoing electron has a minimum in
the laboratory frame for each branch, below which there is no enough phase space to produce the
DM pair. Furthermore, for each branch the contribution decreases with increasing electron energy
Q′

Lab. The shapes of the each branch are different for different operators.
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B. vector and axial-vector bilinears

In cases of the vector and axial-vector operators (X,X ′ = V,A), the total amplitude can be
written as a contraction of two vector currents

MXX′ =
1

Λ2
XX′

gµνMP
X,µMD

X′,ν , (48)

with MP
X,µ and MD

X,ν being the currents for the production and decay of a fictitious spin-1 particle
with momentum k′, respectively

MP
X,µ =

[
u(p′)

(
1− e /A/k

2k · p′

)
ΓX

(
1− e/k /A

2k · p

)
u(p)

]
, (49)

MD
X′,ν =

[
uχ(pχ)ΓX′v(p′χ)

]
, (50)

where ΓX(X′) = γµ, γµγ5 stand for the corresponding vector and axial vector Lorentz structures.
Unlike the case of (pseudo-)scalar operator, the production and decay parts for the (axial-)vector
operators are not Lorentz invariant individually. However, by employing the helicity amplitude
method, the amplitude can be decomposed into two Lorentz invariant amplitudes along the mo-
mentum k′. This can be addressed by inserting the following relation for the geometry metric

gµν =
∑

λ=s,0,±1

ηλε
µ∗
λ ε

ν
λ , (51)

where ηs = 1 and η0,±1 = −1, and εµλ are polarization vectors with helicity λ = s, 0,±1 projected
along the momentum k′. One can easily find that the total amplitude can be rewritten as

MXX′ =
1

Λ2
XX′

∑
λ=s,0,±1

ηλMP
X,λMD

X′,λ , (52)

with MP
X,λ = ε∗λ ·MP

X and MD
X′,λ = ελ ·MD

X′ . It is clear that both MP
X,λ and MD

X′,λ are invariant
under Lorentz boost along direction of the momentum k′. By virtue of this, the decay amplitude
can be calculated in the rest frame of the momentum k′. As we have mentioned, even through
both MP

X,λ and MD
X′,λ depend on the number of laser photon n, only the production amplitude

MP
X depends on the variable z. Hence, for each photon number n the above decomposition is still

valid. As a result, for given laser photon number n, the n-th amplitude can be written as

MXX′,n =
1

Λ2
XX′

∑
λ=s,0,±1

ηλMP
X,n,λMD

X′,λ , (53)

with MP
X,n,λ = BnMP

X,λ.
The corresponding total density matrix elements are given as

ρXX′,n =
1

Λ2
XX′

∑
λ,λ′=s,0,±1

ηληλ′PX,n,λλ′DX′,λλ′ , (54)
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with

PX,n,λλ′ =
1

4
MP

X,n,λ

(
MP

X,n,λ′

)†
, (55)

DX′,λλ′ = MD
X′,λ

(
MD

X′,λ′

)†
. (56)

Again, the spin of the incoming electron has been averaged, and the spin of the outgoing dark
fermions is summed over implicitly. The total decay width is then given as,

ΓXX′ =
1

Λ4
XX′

∞∑
n=−∞

1

2QLab

∫
dΠP,n

∫
dm2

k′

2π

∑
λ,λ′=s,0,±1

ηληλ′PX,n,λλ′ DX′,λλ′ , (57)

with DX′,λλ′ =
∫
dΠD,nDX′,λλ′ being the averaged decay density matrix over the 2-body phase

space of the outgoing DM particles. Because of this, polarization effects are washed out and the
averaged density matrix DX′,λλ′ is simplified significantly. After some calculations, one can easily
find that the averaged decay density matrix are given as

DV,λλ′ = δλλ′


0 , for λ = s

1

4π
m2

k′βχ

(
1− 1

3
β2
χ

)
, for λ = 0,±1

(58)

DA,λλ′ = δλλ′


1

4π
m2

k′βχ
(
1− β2

χ

)
, for λ = s

1

6π
m2

k′β
3
χ , for λ = 0,±1

(59)

One can see that, for either the vector or axial-vector operator, the averaged decay density matrices
with scalar and vector polarization states have completely different dependence on the velocity as
different partial wave contributions. Furthermore, the matrices for vector state is always diagonal,
i.e., proportional to δλλ′ , due to the fact that interference effects have been integrated out. With the
help of this simplification, the total decay width is given as

ΓXX′ =
1

Λ4
XX′

∞∑
n=−∞

1

2QLab

∫
dΠP,n

∫
dm2

k′

2π

∑
λ=s,0,±1

PX,n,λλ DX′,λλ , (60)

which involves only diagonal elements of the production density matrix. After tedious but straight-
forward calculations, we arrive at the following results

PV,n,ss = 0 , (61)∑
λ=0,±1

PV,n,λλ = −4J2
n(m

2
e +

1

2
m2

k′)− 4e2a2Jn

(
u+

1

4u

)
, (62)

PA,n,ss = −4J2
nm

2
e − 8e2a2

m2
e

m2
k′
Jnu

(
1− 1

2u

)2

, (63)
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∑
λ=0,±1

PA,n,λλ = 8J2
n(m

2
e −

1

4
m2

k′)− 8e2a2Jn

[
1

2

(
u+

1

4u

)
+
m2

e

m2
k′
u

(
1− 1

2u

)2
]
. (64)

One can clearly see that for both the vector and axial-vector operators, there are terms explicitly
proportional to a2 due to pure nonlinear absorption of the laser photons, and terms proportional to
m2

eJ
2
n which accounts for higher order absorption of the laser photons.
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FIG. 3. The decay width of the laser dressed electron for the operator OV V (top-left), OV A (top-right),

OAV (bottom-left) and OAA (bottom-right) as a function of quantity η, as labeled in Fig. 1.

Fig. 3 shows the decay widths of the laser dressed electron for the operator OV V (top-left), OV A

(top-left), OAV (bottom-left) and OAA (bottom-right) as a function of the laser intensity parameter
η. The results are shown for a fiducial energy scalar Λ = 10 GeV, and a DM mass mχ = 0 GeV
(green curves) or mχ = 0.1me (blue curves). The total contributions are shown by solid curves,
and the contributions from every branch are denoted by dashed and dotted lines as shown in legend
of the Fig. 1. The Fig. 4 shows the normalized distribution of the total decay width with respect
to the energy of the outgoing electron for a dark fermion mass mχ = 0 GeV (green curves) and
mχ = 0.1me (blue curves). The laser intensity parameter has been set to be the typical value of
the SLAC experiment [27], i.e., η = 0.3. The total contributions up to n = 6 are shown by solid
curves, while the contributions of each branch are also shown by non-solid curves. The features
for these operators are similar to those for (pseudo-)scalar operators.
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FIG. 4. The normalized distribution of the decay width with respect to the energy of the outgoing electron

for the operator OV V (top-left), OV A (top-right), OAV (bottom-left) and OAA (bottom-right), as labeled in

Fig. 1.

C. virtual photon mediator

In this subsection, we discuss a mediator model in which the dark fermion χ interacts with
the electrons through dipole couplings, and the corresponding effective operators are defined in
Eq. (6). In this case, the amplitude can be decomposed similar to the (axial-)vector effective
operators. However, here we need to insert the metric decomposition defined in Eq. (51) twice.
One can easily find that the n-th density matrix elements are given as,

ρV X′,n =
1

m2
k′

∑
λ,λ′=s,0,±1

ηληλ′PV,n,λλ′DX′,λλ′ , (65)

where 1/m2
k′ strands for the propagator of the virtual photon. Furthermore, in the above equation,

we have taken into account that the Lorentz structure on the production side is always of vector
type. Its expressions are already given in Eq. (61). For the decay part, since all the kinematics of
the outgoing DM is integrated out, the averaged decay density matrix elements are again diagonal.
After tedious calculations we find that, for both the magnetic and electric dipole operators, the
density matrix elements with helicity λ = s always vanish, and the non-vanishing matrix elements
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with λ = 0,±1 are given as

DM,λλ′ =
1

4π
m4

k′βχ

(
1− 2

3
β2
χ

)
δλλ′ , λ = 0, ±1 (66)

DE,λλ′ =
1

12
m4

k′β
3
χδλλ′ , λ = 0, ±1 (67)

One can see that the magnetic and electric dipole contributions have different velocity (βχ) de-
pendence. For ultra-light DM, βχ ∼ 1, the electric dipole contribution is always larger, while the
magnetic dipole contribution becomes larger for heavier DM. The total contributions are given by
integrating over the full range of the invariant mass m2

k′ (and hence the velocity βχ), however this
property is still valid.
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FIG. 5. The decay width of the laser dressed electron for the operator OMD (left) and OED (right) as a

function of the laser intensity parameter η. The meaning of each curve are shown in the legend of the Fig. 1.

Fig. 5 shows the decay widths of the laser dressed electron for the operator OMD (left) and OED

(right) as a function of the laser intensity parameter η. The results are shown for a fiducial energy
scale Λ = 10 GeV, and a DM massmχ = 0 GeV (green curves) ormχ = 0.1me (blue curves). The
total contributions are shown by solid curves, and the contributions from every branch are denoted
by dashed and dotted lines as shown in legend of the Fig. 1. The Fig. 6 shows the normalized
distribution of the total decay width with respect to the energy of the outgoing electron for a dark
fermion massmχ = 0 GeV (green curves) andmχ = 0.1me (blue curves). As we have mentioned,
while the decay density matrix element of the electric dipole moment is larger for lighter DM, the
one for magnetic dipole moment is larger for heavier DM. This can be seen clearly in the Fig. 5.
Other features are similar to those for other operators.

IV. NUMERICAL RESULTS

In this section, we show the numerical results of the laser induced Compton scattering to a DM
pair. The signal event in our case is composed of one single electron and missing energy carried
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FIG. 6. The normalized distribution of the decay width with respect to the energy of the outgoing electron

for the operator OMD (left) and OED (right), as labeled in Fig. 1.

away by DM pair, and becomes

Ns =
1

2ρω
Γ · L , (68)

where ρω = a2ωLab

4π
is the laser photon density [28] with 1

2ρω
Γ being the scattering cross sec-

tion [28], and L is the integrated luminosity. The luminosity is given by

L = NeρωℓNbft , (69)

where Ne = 1.5 × 109 denotes the number of electrons in a bunch in the electron beam of the
European XFEL (EuXFEL) accelerator used for the LUXE experiment [40], Nb = 2700 is the
number of individual bunches in the beam [40], f is the laser operating frequency of 1 Hz [40],
ℓ ≃ 50 µm is the electron pathlength through the laser focus [27], and t = 5 × 106 s is the
physics data taking time after taking into account the LUXE data taking efficiency of 75% [40].
We obtain L ≃ 0.6 ab−1 by choosing η = 0.3 and the above parameters. This luminosity is too
conservative to give sizable constraints on the new physics energy scale. Higher laser intensity
can give larger number density ρω, and hence larger luminosity. However, higher intensity may
affect the stability of laser system. On the other hand, it is easier to enhance the luminosity by
increasing the number of electrons in each bunch or the operating frequency. For instance, the
BESIII experiment can achieve an operating frequency above 1 kHz [41]. Thus, a much higher
luminosity can be expected.

We assume the observed signal event number as Ns = 10 with ELab = 14 GeV,L = 0.6 ab−1

and obtain the projected limits on the energy scale of DM EFT as shown in Figs. 7, 8 and 9.
The reachable bound of the UV energy scale is about 1 GeV for the dimension-6 operators and
mχ < 1 MeV. For the dimension-5 magnetic (electric) dipole operator, the expected bound can
reach as high as 2×104 GeV (3×103 GeV). For comparison, the limits [42] from direct detection
experiments PandaX-4T [43], XENON1T [44] and XENON10 [45] are also shown. Although they
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can reach higher UV energy scale, these direct detections and others [46–49] are difficult to probe
the regime of DM mass smaller than 1 MeV.
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FIG. 7. Expected limits (green curve) on ΛSS (top-left), ΛSP (top-right), ΛPS (bottom-left) and ΛPP

(bottom-right). The limits [42] from PandaX-4T [43], XENON1T [44] and XENON10 [45] are also shown

for comparison.

V. CONCLUSION

The collision of an ultra-relativistic electron beam with a laser pulse of an intense electromag-
netic field induces the decay of electron. The precision measurement of this nonlinear Compton
scattering catalyzes the studies of nonlinear QED and the search of new physics in terrestrial
experiments. The high-intensity facility with intense electromagnetic field may compensate the
shortcomings of other experiments.

In this work, we propose to search for the nonlinear Compton scattering to a pair of DM in
the presence of a high intense laser field. We take into account the Dirac-type fermionic DM in
leptophilic scenario and the DM-electron interactions in the framework of effective field theory.
The rates of electron decay to fermionic DM pair are calculated for effective DM operators of
different bilinear products. We find that
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FIG. 8. Expected limits (green curve) on ΛV V (top-left), ΛV A (top-right), ΛAV (bottom-left) and ΛAA

(bottom-right). The limits [42] from PandaX-4T [43], XENON1T [44] and XENON10 [45] are also shown

for comparison.
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FIG. 9. Expected limits (green curve) on ΛMD (left) and ΛED (right). The limits [42] from PandaX-4T [43],

XENON1T [44] and XENON10 [45] are also shown for comparison.

• The absorption of multiple laser photons significantly increases the width of election decay
to a DM pair, making it several orders of magnitude larger than the result for n = 1.
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• As the number n increases, the energy of the outgoing electron exhibits continuous edges
towards lower energy region, and the differential decay width correspondingly decreases.

• The reachable bound of the UV energy scale is about 1 GeV for the dimension-6 operators
in DM EFT, under a conservative luminosity of L = 0.6 ab−1. For the dimension-5 dipole
operators, the expected bound can reach as high as 103 − 104 GeV.

• The laser induced process provides a complementary search of DM particle with mχ < 1

MeV, compared with direct detection experiments.
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