TAS WP4-2 report
Generic Tools for Artificial Neural Network
Implementation on Field Programmable Gate
Arrays

A.B. Cee!, Arno Straessner'®, and Johann C. Voigt!®

YUniversitat Efg
0 Technische Universitiat Dresden

Abstract
Text
Contents
1__Introductionl 2
[IL1 _Relation to other work in TAS[. 2
2 Eval . FRIS4AmL T =5 [assificati F cal]
|__radio signals| 2
2.1 Background|o 2
P2 _FPGASolutiond 3
221 ML modell. 3
22,2 HILSAML frameworkl 4
2.2.3 FPGA Implementation|. 4

3 VHDL implementation of convolutional neural networks for |
| real-time processing of ATLAS Liquid-Argon Calorimeter data| 5

[3.1 _Overview of LAr calorimeter off-detector upgrade| 5
[3-2 Requirements and their influence on network training and firmware |
| design| 5
8.3 Firmware implementation|o 6
4 Evaluation of Al hardware engines with AMD Versal Al 7
[> Recommendations for users and developers| 9

[6 Summary and Outlook| 10

1 Introduction

General content of the sections:

e Focus on hardware and firmware/HLS solutions, findings, experience, re-
sults

e reference to code repository (ideally public)
e only references to ANN training and training results

Here some text on importance of fast feature extraction in data flow of
physics experiments, FPGA solutions and ANN approaches. Connection to
PUNCHA4NEFDI [1] as future service provider.

1.1 Relation to other work in TAS5

2 Evaluation of hls4ml for real-time classifica-
tion of astronomical radio signals

editors: MPIfR group

2.1 Background

With large radio arrays such as MeerKAT and SKA becoming the primary radio
facilities, these telescopes generate enormous data rates of up to tens of terabits
per second. Due to the difficulty of storing such massive data volumes, real-time
processing is essential. However, the radio data are often contaminated by radio
frequency interference (RFI) caused by human activities. This contamination
results in numerous false-positive candidates, particularly in pulsar and fast
radio burst (FRB) searches. Traditional methods often struggle to effectively
identify these signals, making machine learning (ML) techniques increasingly
necessary.

Furthermore, in transient signal searches, only a small fraction of the data
contains actual signals. Real-time search capabilities enable trigger modes,
which allow the preservation of useful data and facilitate follow-up observa-
tions. To support this functionality, low-latency, high-throughput ML-based
classifiers are required.

In this project, we conducted experiments to implement an ML-based clas-
sifier on an FPGA using the HLS4ML framework. The details of this imple-
mentation are presented below.

Convolution Max-Pooling Convolution Max-Pooling Fully-
(3x3) kernel (2x2) (3x3) kernel (2x2) Connected

28x28x1 26x26x8 13x13x8 11x11x8 5x5x8

Figure 1: Diagram of the CNN-based classifier for evaluating the HLS4ML
framework.

2.2 FPGA Solutions

We evaluated the HLS4AML framework by deploying a CNN-based classifier
trained on the MNIST dataset [2] onto an Alveo card (https://github.com/
ypmen/punch_workshop). The results were compared among inferences from
the original model, HLS code, and hardware output, all of which demonstrated
similar accuracy. The inference latency per image was approximately ~40 us,
with a throughput of up to 20,000 images per second, utilizing about 5% of the
FPGA’s resources. Details of the evaluation are provided below.

2.2.1 ML model

To test the HLS4ML framework, we implemented a QKeras-based classifier for
the MNIST dataset. The model takes inputs of handwritten digits and outputs
the probabilities for each digit from 0 to 9. QKeras enables the implemen-
tation of CNN models with quantized parameters, allowing for quantization-
aware training—a modern technique that reduces computational complexity
without significantly impacting model accuracy. The model contains approxi-
mately 2,700 parameters in total.

This approach is particularly useful for implementing ML models on FP-
GAs, as FPGAs natively support fixed-point formats, which can significantly
reduce resource usage compared to floating-point formats. To further minimize
computational demands, we applied pruning to the model, reducing the number
of parameters by a factor of 2.

The pruned QKeras model was trained on a CPU, achieving an accuracy
of over 95%. This trained model was then used as input for the HLS4ML
framework.

https://github.com/ypmen/punch_workshop
https://github.com/ypmen/punch_workshop

MNIST —_— Ple
dataset %‘ Host ‘:{> HBM =—> mm2s =)
T —

Alveo U55C

CNN
kernel

Figure 2: Diagram of the testbench of the ML kernel on FPGA.

2.2.2 HLS4ML framework

HLS4ML is a framework that converts TensorFlow models into Vitis HLS C++
code. This HLS code can subsequently be converted into HDL and synthesized
using Xilinx toolchains. The HLS4ML framework requires configuration for
each CNN layer. To ensure that the output HLS code aligns with the original
QKeras model, we set the precision in the HLS4ML configuration to match that
of the input model. The framework has two limitations:: (1) The size of the
filter, i.e. Mheight X Mwidth X Nchannel X Mlter, Must be less than 4096 to enable
loop unrolling during compilation; (2) The input size of the dense layer cannot
exceed 4096.

Using the HLS4ML framework, the QKeras model was transformed into HLS
code. The resulting HLS code was verified as a standard C++ library by testing
it on the same input dataset. The accuracy of the HLS code output matched
that of the original QKeras model.

2.2.3 FPGA Implementation

To implement the model on an FPGA, we exported the HLS code generated
by the HLS4ML framework as a Xilinx Vitis kernel. This kernel was then built
using the Vitis toolchain to generate a bitstream. For demonstration, we used
the Xilinx Alveo U55C card in our experiment. The testbench operated as
follows:

1. The test dataset was transferred from the host to the High Bandwidth
Memory (HBM) on the Alveo card via the PCle bus;

2. The data were fed into the ML kernel for inference;
3. The inference results were written back to the HBM;

4. The results were transferred from the Alveo card back to the host for
verification.

As a result, the inference outputs from the FPGA matched those obtained
from the CPU.

Table 1: Summary of Utilization Estimates on Alveo Ub5C card.

Name BRAM_18K DSP FF LUT URAM
Total 80 14 18605 76663 0
Available SLR 1344 3008 869120 434560 320
Utilization SLR (%) 5 0 2 17 0
Available 4032 9024 2607360 1303680 960
Utilization (%) 1 0 0 5 0

3 VHDL implementation of convolutional neu-
ral networks for real-time processing of AT-
LAS Liquid-Argon Calorimeter data

editors: Dresden group

3.1 Overview of LAr calorimeter off-detector upgrade

Starting in 2026, the ATLAS detector at CERN will undergo an upgrade in
preparation for the high-luminosity phase of the LHC. As part of this upgrade,
556 Intel Agilex-7 FPGAs will be installed for real-time processing of the liquid
argon (LAr) calorimeter signals. They will be installed in a cavern shielded from
the radiation environment at the detector. One FPGA will receive the data of
up to 384 detector cells via 66 optical links and send the processed data towards
the ATLAS trigger system and the readout.

3.2 Requirements and their influence on network training
and firmware design

The LAr calorimeter produces pulses that are significantly longer than the time
until new events can trigger another signal. This means that it is possible
for the pulses from multiple events to overlap. This problem increases under
the running conditions forseen for the high luminosity phase of the LHC. To
better deal with this behavior, small artificial neural networks (ANNs) are being
evaluated as a potential digital signal filter. The main purpose of this filter is
to determine the energy deposited per detector cell.

The input data for one such network will be the 40 MHz ADC output of one
detector cell. One architecture suited for a 1-dimensional regression problem
is a convolutional neural network (CNN). They also have a relatively simple
structure, which will help with the implementation on FPGAs.

The high bandwidth of the data to process, combined with the large number
of optical links, severely limited the choice of FPGA and were important factors
for choosing the Intel Agilex-7 device family.

As the results are required by the ATLAS trigger, a tight latency budget of
approximately 150ns applies to the planned inference in the FPGA firmware.

This has an influence on the architecture of the network, as the number of layers
should remain as low as possible to stay within this latency budget.

Since each of the 384 detector cells processed on one FPGA should be han-
dled independently, one CNN per cell is required. To leave some margins and
space for other firmware components on the FPGA, the networks should there-
fore not contain more than 400 multiply-accumulate operations.

The FPGA contains specialized multipliers that can be used for 2 simultane-
ous multiplications, if the bit width is limited to 18 bit. Therefore, quantization-
aware training should be used to optimize the network for 18 bit fixed point
numbers.

The goal is also to have only one compiled firmware for all FPGAs in the
system. This means that the weights need to be configurable at run-time. A
configuration via Ethernet using the IPBus has already proven itself in earlier
LAr projects and will therefore be used again. Furthermore, it is not possible
to apply optimizations to the CNN architecture, which depend on the trained
weights. The common technique of pruning is therefore not applicable as it is
not guaranteed that the same nodes need to be pruned for all detector cells.

3.3 Firmware implementation

In order to have the best control over the resources of the FPGA, it was decided
to go for a manual implementation in the low level VHDL language for the CNN
inference code. CNNs have a structure that is easy to divide into multiply-
accumulate-chains. This operation is then manually assigned to chains of DSP
blocks on the FPGA. The basic building block for the CNN in the firmware is
a filter. The number of multiplications required per clock cycle for one filter is
determined by the product of the kernel size and the number of parallel inputs.
The mapping of multiplications to DSPs therefore groups the input belonging
to the same kernel element, but different input streams together to one DSP
if possible. For an odd number of input streams, the last one is grouped in
kernel direction to always assign two multiplications to one DSP block. These
are connected into chains to also make best use of the chain-adder feature of the
DSP blocks. This ensures a near optimal utilization of the DSPs. The results
of these chains are then added in normal FPGA logic and output towards the
next layer.

The input data arrives at a frequency of 40 MHz, while the FPGA is able to
run at higher frequencies. Time-domain multiplexing is a concept that makes
use of this, by combining multiple input channels into a single serialized stream,
which is then processed at a higher frequency. For the CNN firmware, a mul-
tiplexing factor of 12 is targeted, meaning that the firmware needs to run at
480 MHz. Because one firmware block is then processing the input from 12 de-
tector cells cyclically, the weights need to be continuously cycled between 12 sets
in the same manner. When combining this with the DSP chains, the weights
are required in a non-trivial order because of the time delays from the different
components. It proved to be very important to store the weights in the weights
memory block in the order that is required in the firmware to make the routing

as simple as possible. When configuring the network weights this induces some
additional overhead because the weights need to be reordered compared to how
they are usually stored on a PC.

The network training itself is done using Tensorflow through the Keras API.
A custom Python script is then responsible for reading the training output
files with the architecture and weights and converting it into an architecture
description file for the firmware and a weights file that can be used to load the
weights to the FPGA via ethernet later. The architecture description file itself
describes the CNN using VHDL constants. It is read at compile time and allows
the VHDL code to be flexible in terms of the number of layers, the kernel size
and dilation per layer. Further options include the possibility to concatenate
the input of a higher up layer with the input of the network. The precision
and position of the decimal point for the fixed-point numbers to be used per
layer can be configured. All these parameters are automatically extracted from
the Keras or QKeras training files to allow a smooth transition from network
training on a PC into the FPGA firmware. A Python model of the quantized
network inference as it is implemented on the FPGA is available to verify the
results.

The low level implementation is more custom-tailored for the specific appli-
cation and not directly transferable to other projects due to the limited features
that are supported. It is specialized to the particular FPGA architecture and
therefore not directly portable to other FPGA device families or vendors. This
loss in flexibility is countered by the very efficient resource utilization for the
particular use case it has been designed for.

Text[3]

4 Evaluation of AI hardware engines with AMD
Versal Al

editors: Mainz group

Xilinx (now part of AMD) introduced in 2018 a new category of hardware
platform, the Adaptive Compute Acceleration Platform (ACAP). It is adver-
tised as combining the strengths of FPGAs, CPUs and GPUs into one device[4].
Compared to previous system-on-chip (SoC) generations, the programmable
logic (PL, the FPGA fabric) and the processing system (PS, the ARM proces-
sors) are better integrated through a network-on-chip (NoC) and shared RAM,
making it easier to distribute the workload specifically to the sub-system that
is best suited to the task at hand.
Versal, the first series of ACAPs, is offered in different families: AT Core/Edge,
Prime and Premium. AI Core/Edge devices and certain Premium family de-
vices feature "Al engines’ (AIE) designed for signal processing (e.g. FIR filters)
and Machine Learning (ML) tasks. These vector processors provide signifi-
cant parallel computing capabilities and are also utilized as Neural Processing
Units (NPUs) in AMD Ryzen 7040 and 8040 Series processors under the name

arno
Notiz
resource usage and performance (latency, frequency) from Nick's thesis

XDNA[].

Our objective is to explore the feasibility of these Al engines for stream pro-
cessing in low-latency, real-time environments, for example trigger applications
in High-Energy Physics.

The Al engines are Very Long Instruction Word (VLIW) processors arranged
in a two-dimensional array external to the programmable logic fabric. Optimised
for vector SIMD (Single Instruction, Multiple Data) processing, they are able
to perform up to 32 multiply-accumulate operations in 16-bit precision in a
single cycle. Unlike the DSP blocks (Digital Signal Processing) in the FPGA
fabric, which are simple multiply-accumulators, the Al engines are full-fledged
processors and capable to handle conditional statements, loops, arithmetic op-
erations, and memory access. Furthermore, the engines are designed with a
stream-oriented architecture, utilizing shared memories and a cascade bus to
facilitate efficient data transfer between engines.

The Al engine array architecture facilitates data access and communication
through several interfaces. Each engine is equipped with its own local mem-
ory. These memories are shared with the horizontal and vertical neighbours.
A stream bus, constructed using AXI switches, supports static routing with
single-cycle latency per switch. This bus incorporates advanced features such
as broadcasting, de-/multiplexing, and Direct Memory Access (DMA), which
streamline data flows within the array. Additionally, a cascade bus from an
engine to one neighbour enables the efficient forwarding of intermediate results.
The AT engine array has also interfaces with the Network-on-Chip (NoC) and
Programmable Logic (PL) for data in- and output.

The recommended approach for utilizing Al engines is through the Vitis Al
software framework, which integrates with the Deep Learning Processor Unit
(DPU), an IP core. Vitis Al translates neural network models into tasks ex-
ecuted by the DPU, leveraging Al engines or DSPs in the PL. However, tests
performed as part of the evaluation, revealed significant limitations for low-
latency applications. For instance, even a trivial neural network comprising a
single neuron incurs a latency of 30 ps, making it unsuitable for time-critical
trigger scenarios.

An alternative to relying on the Vitis Al framework is the direct program-
ming of Al engines. This involves the following workflow:

e PL Firmware Development: Create the programmable logic design, in-
cluding the CIPS (Controller for Integrated Platform Services) and Al
engine blocks (black boxes).

e Interface Definition: Define AXI-stream interfaces between the PL and Al
engines, with connectivity established later in Vitis.

e Al Engine Software: Write kernels in C++ and define an Al engine graph
to connect PL streams to Al engine kernels and between kernels.

e Design Compilation: Compile AI engine kernels, synthesize and imple-
ment the PL design in Vivado, and integrate all components into bootable
system files.

The PL interface for Al engines supports 37 interfaces, each offering 8x 64-
bit PL-to-AIE buses and 6x 64-bit AIE-to-PL buses, with a maximum interface
frequency of half the AI engine clock rate. Measured latency for a round-trip
operation, including a simple increment, is 51.2 ns at 625 MHz.

An example application of Al engines is a matrix-vector multiplication. A
single AI engine computes the product of a 64x16 matrix with a 16x1 vector
(16-bit), requiring 1,024 multiplications, in 32 cycles corresponding to a latency
of 25.6 ns at a 1.25 GHz clock rate.

Various architectural strategies can be employed to optimize the mapping of
applications to Al engines:

e Single Engine: Processes one event at a time, leading to high latency for
multiple events.

e Round-Robin Scheduling: Distributes the workload across engines for par-
allel processing, reducing latency per event.

e Pipeline Architecture: Processes data sequentially across engines, with
intermediate results forwarded downstream.

e Zipper Merging: Enhances pipeline designs by feeding additional data
to downstream engines, increasing bandwidth but requiring careful load
balancing.

e Column/Row Distribution: Suitable for applications like convolutional
neural networks (CNNs), distributing computation across neighboring en-
gines.

In conclusion, AMD Versal Al engines provide substantial parallel computing
power. However, achieving their maximum performance and effectively utilizing
them in low-latency stream processing designs necessitates direct connections
to the programmable logic and manual programming, rather than relying on
AMD’s workflow involving their DPU. This requires a careful design and knowl-
edge of the processing time of each step to avoid stalls or even deadlocks.

Our evaluation is ongoing; however, our preliminary findings suggest that the
usage of Al engines for example in trigger applications is feasible.

5 Recommendations for users and developers

editors: all

e Useful public repositories and libraries

e Advice for vendor-specific IP cores and interfaces

6

Summary and Outlook

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) — project number 460248186 (PUNCH4NFDI). Special
thanks to all involved PUNCH4NFDI members.

References

1]

The PUNCH4NFDI Consortium. PUNCH4NFEDI consortium proposal,
September 2020. This is the version documenting the work plan at the
proposal stage. The reduction in funding led to a re-shaping of the work
programme that is documented elsewhere. |[doi:10.5281/zenodo.5722895.

Yann LEcunn and Corinna Cortes. The MNIST Database, 2023. available
at https://yann.lecun.com/exdb/mnist/|

Georges Aad, Anne-Sophie Berthold, Thomas Calvet, Nemer Chiedde,
Etienne Fortin, Nick Fritzsche, Rainer Hentges, Lauri Laatu, Emmanuel
Monnier, Arno Straessner, and Johann Voigt. Artificial neural networks
on fpgas for real-time energy reconstruction of the atlas lar calorime-
ters. Computing and Software for Big Science, 5, 12 2021. |doi:10.1007/
s41781-021-00066-y.

Xilinx, Inc. Versal, the first adaptive compute acceleration platform. URL:
https://docs.amd.com/v/u/en-US/wp505-versal-acap.

Advanced Micro Devices, Inc. AMD XDNA™ Architecture. URL: https:
//www.amd.com/en/technologies/xdna.htmll

10

https://doi.org/10.5281/zenodo.5722895
https://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/s41781-021-00066-y
https://doi.org/10.1007/s41781-021-00066-y
https://docs.amd.com/v/u/en-US/wp505-versal-acap
https://www.amd.com/en/technologies/xdna.html
https://www.amd.com/en/technologies/xdna.html

	Introduction
	Relation to other work in TA5

	Evaluation of hls4ml for real-time classification of astronomical radio signals
	Background
	FPGA Solutions
	ML model
	HLS4ML framework
	FPGA Implementation

	VHDL implementation of convolutional neural networks for real-time processing of ATLAS Liquid-Argon Calorimeter data
	Overview of LAr calorimeter off-detector upgrade
	Requirements and their influence on network training and firmware design
	Firmware implementation

	Evaluation of AI hardware engines with AMD Versal AI
	Recommendations for users and developers
	Summary and Outlook

