
Dmitry Litvintsev
(Fermilab)

19th Internatonal dCache user workshop
May 20 – 21, 2025

IN2P3 computng centre, Lyon, France

Outline

● Parting with Enstore
● Transition to CTA
● First Experience with CTA
● Experience with Bulk
● Hot File Replication
● Thoughts on containers

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 3

Enstore

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 4

Ode to Enstore
● Prototyped in December 1997 when Don Petravick and Jon Bakken visited

DESY to learn about how DESY used MSS. Could not take OSM due to
licensing – wrote a python “version” of it.

– Network attached tape storage with single rooted namespace exposed
to users for directory functions over NFS (PNFS from DESY) with a cp-
like client for tape I/O

– Single threaded

– UDP for control

● Messages fit in 1 datagram
● Retries, Unique Ids
● Clients can't hang servers

– TCP for data transfers

● Accepted as HSM for Run 2 experiments starting from D0

● Has been used in production for 25 years !

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 5

Volume on tape in Enstore vs time

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 6

Fermilab data on tape projections

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 7

 Enstore lessons
● Enstore worked perfectly for Run 2 experiments (under 1PB/year intake each).

– Around 2011 Support for Small File Aggregation (SFA) added

● Some of the choices made at the outset that allowed the system to be simple, nimble and
easy to implement made it somewhat difficult to scale up when rapid expansion of volume,
rates and number of files happened when Intensity Frontier Experiments started taking data (
around 2011)

– Multithreading was introduced soon after deployment for Run 2, but multithreading in
python is fake and provided only partial relief. Transition to multiprocessing was only
partial

– Choice of UDP protocol for control communication ended up with complicated “TCP
over UDP” message delivery check layers

– Message retries caused by slow response of Enstore components under load would
further exacerbate the load leading to even slower response. Enstore database servers
suffered from this issue the most, followed by media changer and library managers. Lost
messages, messages retried due to timeous result in files written multiple times

– Each virtual library manager (LM) maintains an in-memory priority queue of store and
restore requests. A single library manager (typically corresponding to one physical
library) could not handle more than 20K large queue

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 8

● Effect of limited LM queue size is profound.

– The sum of total active stores and
restores on dCache pools had to be kept
under 20K

● This means that Enstore always
“sees” only fraction of all restores for
a given tape resulting in excessive
mounts (the most expensive
operation in this business)

● Likewise, Enstore only sees a
fraction of all write requests which
could be written to a tape in one
mount. Instead tape gets
dismounted to serve different
storage class because requests for
“this” storage class are all QUEUED
on dCache pools

● Opening up dCache queues while
keeping LM queue to 20K resulted in
chaotic LM/encp interaction

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 9

Out with the old, in with the new

● Faced with:
– declining budgets

– need for continuing development effort on Enstore
to address scalability in the face of many-fold
increase in data volume, request frequency and
more stringent security requirements

● Fermilab has decided to adopt CERN Tape
Archive (CTA) HSM (following RAL and DESY)

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 10

Migration path
● Enstore DB metadata → CTA metadata

– Plus location info into dCache metadata
● Significant effort went into cleansing/synchronizing/constraining

Enstore/dCache metadata

● CTA must be able to read Enstore tapes (“cpio-odc” and “cern”
formats). Added two tape types and corresponding read handlers

● Many thanks to PIC who tested reading of Enstore tapes and
identified issues that we had missed in testing

● After “10% test” on ITB configured a subset of CMS T1 Tape
dCache pools to interact with CTA instance to gain operational
experience writing and reading incoming Heavy Ion data

● Mapped out development needed to handle SFA (see below)

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 11

Small File Aggregation (SFA)
● Users write small files
● Small files kill tape I/O performance
● Small file problem was solved in

Enstore by Enstore SFA (sub)-system
that automatically packs (tar) small
files into large containers/packages
based on storage class, size and time
of arrival:

● Improves write performance (less
tape marks to write)

● Reads/writes run at max drive rate
● On reads less positioning,

backhitching – less tape wear
● Provides a read-ahead

mechanism or “pre-fetching” of
the data

● Improves read rates (wall time
based) by factor of 5

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 12

Lost in translation transition

● CTA does not have small file aggregation
feature. CERN relies on buffered tape marks
when writing small files.

● Evaluated small files CTA performance and
provided guidelines for the experiments
(basically policing by agreement).

● Implemented existing SFA files reads in
dCache

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 13

CTA small file write performance
● Generated fake data following real

nova dataset file size distribution
and wrote it to tape

● Two types of read test:
– Read tapes end to end
– Read random 25% of data on

tape
● For LTO-8

– 80% of nominal rate for writing
> 20 MB

– 63% of the nominal rate for
reading > 40 MB

● Guidance: keep files > 100 MB

Work done by Tammy Walton

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 14

R/O SFA in dCache/CTA

● Translate parent/child relation captured in Enstore metadata on
package bfid/child bfid pairs to package pnfsid / child pnfsid and
capture it in Chimera t_locationinfo table, ilocation
with value:

 sfa://sfa/<child pnfsid>?packageid=<parent pnfsid>

● On pools use HSM script (for now) to untar small file from a
package file over NFS mount triggering automatic stage of the
package file if its locality NEARLINE

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 15

R/O SFA in dCache/CTA

pool1 HSM script

parent, child = parse_url(sfa://sfa/12345?packageid=6789)
parent_path = $(cat /pnfs/”.(pathof)(parent)”)
tar -xf ${parent_path} ${child}

NFS Door

dcache-cta
driver

CTA
taped

pool2 PoolManager

CTA FE

get

Pool
dir

CTA Queue
 Retrieve parent

 child

 parent

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 16

Metadata volumes

● 36K tapes (some tapes have ridiculous file
counts in the 300,000s)

● CMS: 40M files
● Public :

– 183M files on tapes

– 441M “small” (packaged files. These files will not be
known to CTA, but need to have locations added in
dCache namespace (aka chimera) DB)

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 17

main

Enstore metadata migration

Queue

put(volume)

Enstore DB

Process
…

for volume = Queue.get
 insert_cta_volume(volume)
 f iles = get_f iles(volume)
 for f ile in f iles:
 location = insert_cta_f ile(f ile)
 insert_chimera_location(f ile,location)

CTA DB

Process
…

for volume = Queue.get
 insert_cta_volume(volume)
 f iles = get_f iles(volume)
 for f ile in f iles:
 location = insert_cta_f ile(f ile)
 insert_chimera_location(f ile,location)

Process
…

for volume in iter(Queue.get, None):
 insert_cta_volume(volume)
 f iles = get_f iles(volume)
 for f ile in f iles:
 location = insert_cta_f ile(f ile)
 insert_chimera_location(f ile,location)

Chimera DB

...

...

...

...

https://github.com/DmitryLitvintsev/enstore2cta

https://github.com/DmitryLitvintsev/enstore2cta

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 18

● CMS production was migrated during downtime
on 2025-04-07

● Public was migrated in two steps:
– First, all full tapes were marked (“user_inhibit_1”)

and these tapes were migrated in advance on live
systems w/o interruptions

– The rest of the tapes were migrated during
downtime on 2025-05-05

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 19

Enstore Metadata Migration Timing

Taken by surprise by rather slow performance of production DB when inserting Public
Metadata. Glad we did it in two steps and minimized downtime.

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 20

Where's Waldo downtime?

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 21

Other aspects of transition to CTA
● Setup:

– 3 front end hosts, 2 in HA setup, one for admin access

– Tape servers with 2 drives per server connected via FC

– CMS and public in two different private networks
● All CTA servers are puppetized

● Log events are shipped to ELK stack

● Monitoring development in progress

● Alarms to slack channel

● Procedure for storage class / tape pool definition

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 22

Adding storage class / tape pool in
CTA

● In Enstore if you did this:

cd /pnfs/foo
echo “dune” > “.(tag)(storage_group)”
echo “raw” > “.(tag)(file_family)
echo “10” > “.(tag)(file_family_width)”
you have defined all that is needed to store data for VO “dune”, dataset
“raw” writing simultaneously to 10 drives. Enstore won't complain as long
as there are blank tapes (an no tape quota is used)

● In CTA things are more constrained and VO “dune”, storage class “
dune.raw@cta” and tape pool “dune.raw” and a tape supply have to be
defined on CTA end, else no data will go to tape.

● A GitLab based workflow developed allowing VO data handling
representatives to make PRs with new storage class / tape pool
definitions. After review and a merge a cron would automatically pull
these definitions and create necessary entries in CTA metadata
catalogue

mailto:dune.raw@cta

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 23

Average reads/writes per mount

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 24

Data rates

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 25

● Reads of Enstore tapes proceed at “enstore rates”. Impacted by:

– No blockid information in metadata (can't utilize tape RAO feature)

– Sample composition – sparse reads per tape (could me mitigated by fine
tuning mount policies per storage class)

● Writes really shine - proceed at nominal drive rate

– See occasional slowdown. Seem to be attributed to situations when
multiple taped server pull data from the same pool host, example:

%Cpu(s): 1.3 us, 2.8 sy, 0.0 ni, 0.4 id, 95.0 wa, 0.1
hi, 0.4 si, 0.0 st

Breakdown of ESTABLISHED connection to pool by dcache-cta driver ports:

 17 cmsstor809:1094

 10 cmsstor809:1095

 15 cmsstor809:1096

Perhaps CTA could benef it from discipline (Enstore term for allowing only so
many transfers per node)

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 26

CTA summary

● We bid Enstore a long goodbye
● Transition to CTA was somewhat slow but

thorough, particularly in the area of hardware
setup and configuration

● We have been running for close to 2 months in
production (starting w/ CMS) and already see
improvements in write rates and mount
efficiency compared to Enstore

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 27

In other news

● No more Grid :)
(GFTP/SRM/gsi{dcap,xrootd,webdav})
– Fermilab non-CMS users no longer use x509

{grid,voms} certificates.

– Completely switched to OIDC tokens

● CMS no longer uses SRM
– Switched to WLCG Tape REST API

– So bulk took over bringonline requests

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 28

Experience with bulk - CMS
● Stable and smooth running

● Re-discovering some of the stuff that was done for SRM, but was sort
of forgotten:

– Bulk uses single scheduler for all activities (pin, stage, ls, release)

– If all Bulk threads are waiting for slow activity to complete (stage)
then all new requests are queued, even if these are pin request
for already ONLINE_AND_NEARLINE files or unpin requests

– FTS won't transfer files if they are not pinned

– This creates problems

– Mitigation is to keep increasing number of threads in bulk thread
pool. Eventually you dial that number right (to match FTS request
load)

– A solution would involve putting each activity on separate thread
pool just like we did for SRM long time ago

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 29

Revisiting Hot Pool Replication
● Current Hot Pool Replication works as follows – if pool cost

gets high all new request for data in this pool will trigger
p2p transfers

– Typically this just does a double whammy on that pool
● Chris Green at Fermilab is working on a “Hot File

Replication” that would trigger replication of a file if number
of requests to this file exceeds a threshold

– Modified migration module to replicate file to pools
belonging to the same pool group without specifying
pool group

– Currently understanding how to manage replication jobs
within this new Hot File Replication manager

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 30

Containers Revolutionized Shipping

 Tape

We are in similar business – shipping and receiving files

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 31

Containers for small files
● Tapes are here to stay

● File based access to tape is not efficient unless files are large

– As tape capacity increases what is large today is small tomorrow

● In the early 2000s, one of the Run 2 experiments, CDF, was building two
tiered (cache/tape) data handling system based on so called filesets, groups
of files put together on 10 GB tape partitions

– Tapes needed to be partitioned before usage

– Besides great I/O, filesets provided a pre-fetch mechanism which
worked nicely as the data was typically colocated on a fileset by time

– The project was eventually abandoned in favor of … you guessed it -
dCache/Enstore, but not because of filesets.

– I wish we had some of them, filesets tho!

● What if we had filesets built into dCache?

2025-05-21 FermiNews | Dmitry Litvintsev | 19th International dCache Workshop 32

R/W SFA in dCache/CTA
pool

Flush queue
policy

triggers f lush
when sum(size)
or time conditions
are met

SFA Hsm Driver

tar -cf pnfsid …. | dcap - dcap://dcache/pnfs/containers/UUID.tar

parent = getFileAttributes(“/pnfs/containers/UUID.tar”).
 getPnfsId()

for pnfsid in pnfsids:
 add_hsm_location(pnfsid, parent)

 put pnfsid, ...

● Regular files have default hsm set to sfa

● Container files have default hsm set to cta and go straight to tape

– So only containers go to tape for a specific storage class
● I would like to explore this further

