# Particles, Strings and Cosmology 2025 Strong interactions

Elisabetta Gallo



**CLUSTER OF EXCELLENCE** 

QUANTUM UNIVERSE



#### Strong interactions



https://videos.cern.ch/record/1989447



#### The color symmetry

Font for this QCD part: Halzen-Martin

# Quantum Chromodynamics

- The theory of strong interactions is based on the SU(3) group\*.
- The discovery of states like the  $\Delta^{++}$  (=uuu) with spin=3/2 posed the problem of having all identical quarks on the same ground state

#### u↑u↑u↑

so that an additional quantum number, the ,,colour'' was introduced. Mesons and baryons are colourless, i.e. the coulour wavefunction of a baryon:

$$(qqq)_{col. singlet} = \sqrt{\frac{1}{6}} (RGB - RBG + BRG - BGR + GBR - GRB).$$

Gluons are coloured and there are 8 generators of the group  $(3^2-1)$ , as one is a colour singlet

#### $\mathbf{R}\overline{\mathbf{G}}, \mathbf{R}\overline{\mathbf{B}}, \mathbf{G}\overline{\mathbf{R}}, \mathbf{G}\overline{\mathbf{B}}, \mathbf{B}\overline{\mathbf{R}}, \mathbf{B}\overline{\mathbf{G}}, \sqrt{\frac{1}{2}}\left(\mathbf{R}\overline{\mathbf{R}} - \mathbf{G}\overline{\mathbf{G}}\right), \sqrt{\frac{1}{6}}\left(\mathbf{R}\overline{\mathbf{R}} + \mathbf{G}\overline{\mathbf{G}} - 2\mathbf{B}\overline{\mathbf{B}}\right)$

# Analogy to QED



The two diagrams look very similar, however:

- different coupling strength ( $\alpha$ =1/128,  $\alpha_s$ =0.116 at M(Z))
- QCD is a non-abelian theory, gluon are coloured and there are gluon selfinteractions diagrams

• due to confinement, quarks are never observed free, but hadronize in bundles of particles. This process is not perturbative, and this poses limitation to the verification of the theory ( $<\sim$  1% precision at the moment)

#### Observation of 2 jets

#### First observed in the electron-positron colliders SPEAR



Fig. 9. Quark-parton model picture of production of hadrons in e<sup>+</sup>e<sup>-</sup> annihilation.



Fig. 16. Observed sphericity distributions at  $E_{C.M.} = 7.4$  GeV for data, jet model (solid curves), and phase-space model (dashed curves) for (a) events with largest  $x \le 0.4$  and (b) events with largest x > 0.4.

# DESY today



#### Observation of three jets





#### Ratio R in e<sup>+</sup>e<sup>-</sup>

In lowest order the cross section for e<sup>+</sup>e<sup>-</sup> in two muons in QED is given by:

$$\sigma(\mathrm{e}^{-}\mathrm{e}^{+} \rightarrow \mu^{-}\mu^{+}) = \frac{4\pi\alpha^{2}}{3Q^{2}}$$

The diagram for the production of a quark pair is the same, except for:

- the quark charge (squared)
- the factor 3 due to the number of coloured state of the quarks

This factor 3 in R was one of the experimental proofs of the 3 ,,colours'' for quarks

$$R \equiv \frac{\sigma(e^-e^+ \rightarrow \text{hadrons})}{\sigma(e^-e^+ \rightarrow \mu^- \mu^+)} = 3\sum_q e_q^2.$$



#### Ratio R in e<sup>+</sup>e<sup>-</sup>



# Lagrangian and $\alpha_S$

How many of you are familiar with the Lagrangian formalism in quantum field theory?

quantum neig theory:

# In QED

We require U(1) local gauge invariance<sup>\*</sup>, where the phase  $\alpha(x)$  is dependent on space and time point-to-point (that's what we are interested in)

$$\psi(x) \to e^{i\alpha(x)}\psi(x)$$

However the Lagrangian of a free particle

$$\mathcal{L} = i\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\overline{\psi}\psi,$$

is not invariant under this trasformation. If we want the Lagrangian to have local gauge invariance, we have to do a trick and introduce the covariant derivative with a field A:

$$D_{\mu} \equiv \partial_{\mu} - ieA_{\mu}$$
$$\mathcal{L} = \overline{\psi} \left( i\gamma^{\mu}\partial_{\mu} - m \right) \psi + e \overline{\psi} \gamma^{\mu}A_{\mu}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

\*invariance under UA(1) implies conservation of current

# In QCD

In analogy to what is done in QED, let's start from the Lagrangian of a free particle

$$\mathcal{C}_0 = \bar{q}_j \big( i \gamma^\mu \partial_\mu - m \big) q_j$$

q=3 quark colour fields

And let's require the Lagrangian to be invariant under the local phase transformation SU(3):

$$q(x) \rightarrow Uq(x) \equiv e^{i\alpha_a(x)T_a}q(x)$$

T= 3x3 matrices

In analogy to what is done in QED, one can ask the Lagrangian to be invariant under local **color** phase transformation to the quark field. This can be achieved by replacing the derivative with the covariant derivative:

$$\partial_{\mu}q \rightarrow D_{\mu} = \partial_{\mu} + igT_{a}G_{\mu}^{a}$$
 G= 8 gluon 13 fields

# QCD Lagrangian

The resulting Lagrangian is:

![](_page_13_Figure_2.jpeg)

Due to the fact that gluons are ,,coloured'', there are also three-gluon and four-gluon vertices, differently to QED. One can symbolically rewrite the Lagrangian as:

$$\mathcal{L} = "\bar{q}q" + "G^2" + g"\bar{q}qG" + g"G^3" + g^2"G^4".$$

# Running of alpha in QED

In QED we have to consider not only the diagrams with the ",bare" charge  $e_0$ , but also the loop corrections in the propagators. We can absorb the loop corrections in a redefinition of the charge  $e_0 \rightarrow e$ , this is the charge that we effectively measure.

![](_page_14_Figure_2.jpeg)

.The relation between the two has to be specified at a particular scale and the charge e (or alpha(QED)) becomes dependent on the scale  $Q^2$  and in particular it increases with energy:

![](_page_14_Figure_4.jpeg)

# Running of $\alpha_{S}$ in QCD

Renormalization group equation for the strong coupling constant:

![](_page_15_Figure_2.jpeg)

For 5 flavour n<sub>f</sub> (true at the scale M(Z)), the dependence of  $\alpha_s$  on the energy is opposite to the one of alpha electromagnetic, that is  $\alpha_{s}$  decreases with increasing energy.

Font: Halzen-Martin

# Strong coupling constant

 $\alpha_{\!S}$  large, confinement of quarks inside hadrons

![](_page_16_Figure_2.jpeg)

# Famous plot on running

Running of the three coupling constant (I=e.m., 2=strong, 3=weak) after first precise measurements at LEP.

![](_page_17_Figure_2.jpeg)

#### Why is this plot famous?

- A) My professor started to believe in Supersymmetry after seeing this plot
- B) It is not famous at all, and the second plot is a mistake
- C) It shows that the coupling constants will never meet
- D) I do not understand the question

### Fragmentation

- Quarks are not observed free. What we observe are jets of hadrons in the direction of the quarks.
- The formation of hadrons is a non-perturbative process, described by empirical models (called hadronization or fragmentation)

![](_page_18_Figure_3.jpeg)

#### Fragmentation

#### Three steps in MC models:

![](_page_19_Figure_2.jpeg)

# Fragmentation models

- Fragmentation is a non perturbative process (small scales, large distances), is treated by phenomenological models, described in Monte Carlo programs with few parameters tuned to data.
- The most popular one is the Lund string fragmentation, called from the town of the developper (Pythia generator, etc.)

![](_page_20_Figure_3.jpeg)

As two quarks try to get apart, a ,,string" (gluon field lines) is created, which finally breaks and creates another pair of quark-antiquark. At the end the pairs combine into final hadrons

#### DIS

Are you already familiar with Deep Inelastic Scattering?

melastic scattering:

# Deep Inelastic scattering

A big confirmation of the quark model first, and later of QCD as theory of strong interactions, came with experiments on Deep Inelastic Scattering:

![](_page_22_Figure_2.jpeg)

- A pointlike beam typically probes the proton (electron, muon, neutrino)
- •,,Deep'' : the four-momentum transfer q is ,,high''  $\sim$  few GeV<sup>2</sup>
- Elastic: the proton does not break-up
- Inelastic: the proton breaks up in hadrons, like in the figure

#### Form factors

Let's first consider the scattering of an electron to an extended charged object, for simplicity with spin zero. The cross section is given by:

![](_page_23_Figure_2.jpeg)

F(q) is the Fourier trasform of the charge distribution and gives information about the structure of the target,  $\theta$  is the electron scattering angle

#### Form factors

For scattering on protons, there is an additional magnetic form factor, due to the fact that the proton has spin  $\frac{1}{2}$ , and the cross section is given by

$$\left\{ \sum_{ep \to ep} = \left( \frac{G_E^2 + \tau G_M^2}{1 + \tau} \cos^2 \frac{\theta}{2} + 2\tau G_M^2 \sin^2 \frac{\theta}{2} \right) \delta\left(\nu + \frac{q^2}{2M}\right)$$

![](_page_24_Figure_3.jpeg)

Have you ever heard about the Rosenbluth formula?

These form factors were determined experimentally measuring the cross section as a function of  $Q^2$ , like here for the  $G_E$  of the proton. The expected drop with  $Q^2$  is clearly seen

#### Inelastic ep->eX

![](_page_25_Figure_1.jpeg)

Increasing the Q<sup>2</sup>, the proton first gets into an excited state (like the  $\Delta$ ) particle and then loses its identity and breaks up into many hadrons X at high invariant mass W. This is what is called the ,,continuum" and corresponds to inelastic scattering.

Data at SLAC

![](_page_25_Figure_4.jpeg)

# Deep Inelastic scattering

With the further increase of the beam energy at SLAC, a dramatic change in the cross section was observed

![](_page_26_Figure_2.jpeg)

![](_page_26_Picture_3.jpeg)

The cross section ratio was found to be constant vs  $Q^2$  and not to have the usual form factor dependence

### Bjorken scaling

![](_page_27_Figure_1.jpeg)

#### Reminder: $d \sim h/Q$

If an object is pointlike, increasing Q<sup>2</sup>, i.e. decreasing the distance, one does not expect to see a change in the structure function. Interpretation from Feynman: scattering with a poinlike object

#### Quark Parton Model

Feynman interpreted the scaling observation in the Quark Parton Model

![](_page_28_Figure_2.jpeg)

If the  $Q^2$  is very high, the time of interaction of the virtual photon with the partons (quarks/ gluons) inside the proton is << than the time of interactions among the partons, which are then see as ,,quasi-free''.

The scattering becomes then as a coherent sum of the individual electron-parton scatterings.

$$F_2(x) = \sum e_q^2 x f(x)$$

- F<sub>2</sub> is called the proton structure function and f(x) the individual parton densities
- The Bjorken scaling variable x is the fraction of proton momentum carried by the struck quark

# How are the $f_i(x)$ ?

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

These functions are called PDF (parton density functions)

### A proton picture

![](_page_30_Figure_1.jpeg)

### Scaling violations

![](_page_31_Figure_1.jpeg)

By increasing further the energy, scaling violations were observed:

 $F_2$  increases with  $Q^2$  at low  $\times$  And decreases with  $Q^2$  at high  $\times$ 

What happens:

- Quarks emit gluons, at low x more and more sea quarks are created and F<sub>2</sub> increases; at high x the valence quarks loose momentum emitting gluons and F<sub>2</sub> decreases
- The line is pQCD, and it perfectly describes the data, over many orders of magnitude
   32

# HERA at DESY (1992-2007)

![](_page_32_Picture_1.jpeg)

#### HERA at DESY

![](_page_33_Figure_1.jpeg)

1 X

### Picture of a proton

https://www.youtube.com/watch?v=G-9I0buDi4s 13:27-15:37

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

Credit: EIC

#### In summary

![](_page_35_Figure_1.jpeg)

PDFs enter any of the cross sections in pp collisions. If you will do an LHC analysis, you will hear a lot about it (CTEQ, MSTW, NNPDF, etc..) and you will have to take them into account, at least as a systematic.

### Example:W, Z production

![](_page_36_Figure_1.jpeg)

Each quark would have  $\sim x$  of the beam energy, so the effective c.m. energy sqrt(s) becomes:

$$M_W^2 = 4x_1 E_{\bar{p}} x_2 E_p = x_1 x_2 s$$
  

$$M_W \simeq x \cdot \sqrt{s} \quad , M_W = 80 \ GeV, \sqrt{s} = 450 \ GeV$$
  

$$x \simeq 0.18$$
  
In valence region

![](_page_36_Figure_4.jpeg)

#### Jets at the LHC

![](_page_37_Figure_1.jpeg)

# Jets algorithms

But how do you combine particles and build a jet and compare to theory?

In order to be theoretical sound a jet algorithm:

- must be infrared safe -> soft radiation should not change jet
- must be collinear safe -> collinear radiation should not change jet
- must be easy to implement in a computer code, applicable to reconstructed objects
- must be fast, etc.

Typically define a distance:

$$\begin{split} d_{ij} &= \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2} \,, \\ d_{iB} &= k_{ti}^{2p} \,, \end{split}$$

Identify the smallest distance in  $\eta$ ,  $\phi$  and recombine objects until no entities are left

![](_page_38_Figure_10.jpeg)

![](_page_38_Figure_11.jpeg)

Most popular algorithm now at the LHC: anti- $k_T$  – corresponds to p=-1. It is the one which has more ,,round" shapes. Usually R=0.4, 0.6 used. 39

#### Jet cross sections

![](_page_39_Figure_1.jpeg)

# QCD and the Higgs

![](_page_40_Figure_1.jpeg)

![](_page_41_Picture_0.jpeg)