To the Higgs and beyond

Hamburg International Summer School 14 – 25 July 2025

Katharina Behr

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery

> Part 2: What is the fingerprint of the vacuum?

- Unravelling the Higgs potential
- Higgs boson pair production
- Extra: Triple Higgs production
- Outlook: the future of the LHC and beyond
- > Part 3: Is there even more to the vacuum?
 - Extended Higgs sectors
 - Extra: news from the ttbar threshold
 - Long-lived particles and the Higgs

h

h

Н

Α

h

 H^+

H-

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery

h

- > Part 2: What is the fingerprint of the vacuum?
 - Unravelling the Higgs potential
 - Higgs boson pair production
 - Extra: Triple Higgs production
 - Outlook: the future of the LHC and beyond
- > Part 3: Is there even more to the vacuum?
 - Extended Higgs sectors
 - Extra: news from the ttbar threshold
 - Long-lived particles and the Higgs

DESY.

What is the vacuum?

Higgs Field

Particle mass \propto interaction strength

q

Heaviest known particle: top quark

Electrons interact weakly with the Higgs field \rightarrow small mass

е

Photons do not interact with the Higgs field → massless

> Artistic view of the Higgs field. Image credit: beyondsciencetv.com

Standard Model of Elementary Particles

Gauge theory:

DESY.

► SU(3)_C x SU(2)_L x U(1)_Y Standard Model of Elementary Particlesthree generations of matter interactions / force carriers strong electroweak (fermions) (bosons) Ш force force ≃2.2 MeV/c² ≃124.97 GeV/c² ≃1.28 GeV/c2 ≃173.1 GeV/c2 mass 0 charge 2/3 ₹⁄3 0 С t Q н u 1∕2 1 1∕2 0 spin 1∕2 Each gauge group charm gluon higgs up top represents a symmetry of BOSONS the Standard Model ≃4.7 MeV/c2 ≈96 MeV/c² ≃4.18 GeV/c² DUARKS 0 0 -1/3 -1/3 -1/3 d S b ν ¥₂ 1∕2 1∕2 1 down strange bottom photon Noether' SCALAR theorem =0.511 MeV/c2 ≃105.66 MeV/c² ≃1.7768 GeV/c² ≈91.19 GeV/c2 GAUGE BOSONS VECTOR BOSONS 0 -1 е μ τ ¥₂ 1∕2 Z boson electron tau muon Each symmetry corresponds EPTONS <1.0 eV/c2 <0.17 MeV/c² <18.2 MeV/c² ≈80.39 GeV/c² to a conserved charge 0 0 ±1 W Ve Vμ ντ 1 1∕2 1∕2 1/2 electron muon tau E.g. colour charge W boson neutrino neutrino neutrino for the strong force

Gauge theory:

Caveat: Assumes massless gauge bosons!

► SU(3)_C x SU(2)_L x U(1)_Y Standard Model of Elementary Particlesthree generations of matter interactions / force carriers strong electroweak (fermions) (bosons) Ш force force ≃2.2 MeV/c² ≃1.28 GeV/c2 ≃173.1 GeV/c2 ≃124.97 GeV/c2 mass charge 2/3 ₹⁄3 0 Н С t C u 1∕2 1∕2 spin 1∕2 Each gauge group charm top gluon higgs up represents a symmetry of S the Standard Model ≃4.7 MeV/c2 ≈96 MeV/c² ≃4.18 GeV/c² DUARKS BOSON -1/3 -1/3 d S b V 1√2 1∕2 1∕2 strange bottom photon down Noether' SCALAR theorem =0.511 MeV/c2 ≃105.66 MeV/c2 ≃1.7768 GeV/c² =91.19 GeV/c2 GAUGE BOSONS VECTOR BOSONS -1 е μ τ ¥₂ 1∕2 electron Z boson tau muon EPTONS Each symmetry corresponds <1.0 eV/c2 <0.17 MeV/c² <18.2 MeV/c² 80.39 GeV/c² to a conserved charge 0 0 Ve Vμ ντ 1∕2 1∕2 1/2 electron muon tau E.g. colour charge W boson neutrino neutrino neutrino for the strong force

Gauge theory:

Caveat: Assumes massless gauge bosons!

Massless: g, y

Very massive: W, Z

How can we make gauge bosons massive?

> Example: U(1) theory with field A_{μ}

The (Brout-Englert-) Higgs mechanism: idea

- > Add a new scalar field ϕ to the SM: Higgs field
- > <u>Trick</u>: this field has a Mexican hat potential
 - Potential as a whole is symmetric under gauge transformation
 - Its ground state(s) are not
- > Spontaneous symmetry breaking!
- > Dynamically generates W and Z boson masses

$$A_{\mu}(x) \to A_{\mu}(x) - \partial_{\mu}\eta(x),$$

 $\phi(x) \to e^{ie\eta(x)}\phi(x).$

The (Brout-Englert-) Higgs mechanism: idea

- > Add a new scalar field ϕ to the SM: Higgs field
- > <u>Trick</u>: this field has a Mexican hat potential
 - Potential as a whole is symmetric under gauge transformation
 - Its ground state(s) are not
- > Spontaneous symmetry breaking!
- > Dynamically generates W and Z boson masses

The (Brout-Englert-) Higgs mechanism: Lagrangian

Katharina Behr

The (Brout-Englert-) Higgs mechanism: Lagrangian

> Extend Lagrangian by Higgs kinetic and potential terms:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi)$$

 Here for simplicity: complex scalar field (2 degrees of freedom)

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right)$$

 <u>In fact</u>: complex iso-spin doublet (4 degrees of freedom)

$$\Phi = \sqrt{\frac{1}{2}} \begin{pmatrix} \Phi_1 + i\Phi_2 \\ \Phi_3 + i\Phi_4 \end{pmatrix} = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$$

Invariant under gauge transformation:

$$A_{\mu}(x) \to A_{\mu}(x) - \partial_{\mu}\eta(x),$$

 $\phi(x) \to e^{ie\eta(x)}\phi(x).$

Spontaneous symmetry breaking

> Ground state(s) with non-zero vacuum expectation value

$$\left<\phi\right> = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v \end{array} \right)$$

Vacuum expectation value

> v determined by EW precision measurements

$$v = \sqrt{rac{1}{\sqrt{2}G_F}} pprox 246 ~{
m GeV}.$$

Spontaneous symmetry breaking

> Ground state(s) with non-zero vacuum expectation value

$$\left\langle \phi \right\rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v \end{array} \right)$$

Vacuum expectation value

> v determined by EW precision measurements

$$v = \sqrt{rac{1}{\sqrt{2}G_F}} pprox 246 ~{
m GeV}.$$

> "Distance" of ground-state from zero:

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

How does this relate to physical quantities?

Expand around the EW vacuum (minimum)

> Reparameterise in terms of Higgs mass m_h and v

$$\lambda = rac{m_h^2}{2v^2} \qquad v = \sqrt{rac{\mu^2}{\lambda}}.$$

> Only free parameter of Higgs mechanism: m_h

$$\lambda_3 \qquad \lambda_4 \ V(h) = rac{1}{2}m_h^2h^2 + rac{m_h^2}{2v}h^3 + rac{m_h^2}{8v^2}h^4.$$

Gauge boson mass!

> Rewrite original Lagrangian after symmetry breaking and expansion

DESY.

Katharina Behr

> Expanding around the vacuum expectation value

$$egin{aligned} \mathcal{L}_{ ext{Higgs}} &= rac{1}{2} (\partial_{\mu} h)^2 - rac{1}{2} m_h^2 h^2 - rac{m_h^2}{2v} h^3 - rac{m_h^2}{8v^2} h^4 + M_W^2 W_\mu^+ W^{\mu-} + rac{1}{2} M_Z^2 Z_\mu Z^\mu \ &+ rac{2 M_W^2}{v} h W_\mu^+ W^{\mu-} + rac{M_Z^2}{v} h Z_\mu Z^\mu + rac{M_W^2}{v^2} h^2 W_\mu^+ W^{\mu-} + rac{M_Z^2}{2v^2} h^2 Z_\mu Z^\mu \end{aligned}$$

$$\begin{split} \mathcal{L}_{\rm Higgs} &= \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 - \frac{m_h^2}{2v} h^3 - \frac{m_h^2}{8v^2} h^4 + \boxed{M_W^2 W_{\mu}^+ W^{\mu-}} + \frac{1}{2} M_Z^2 Z_{\mu} Z^{\mu} \\ &+ \frac{2M_W^2}{v} h W_{\mu}^+ W^{\mu-} + \frac{M_Z^2}{v} h Z_{\mu} Z^{\mu} + \frac{M_W^2}{v^2} h^2 W_{\mu}^+ W^{\mu-} + \frac{M_Z^2}{2v^2} h^2 Z_{\mu} Z^{\mu} \end{split}$$

$$\mathcal{L}_{\text{Higgs}} = \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 - \frac{m_h^2}{2v} h^3 - \frac{m_h^2}{8v^2} h^4 + M_W^2 W_{\mu}^+ W^{\mu-} + \frac{1}{2} M_Z^2 Z_{\mu} Z^{\mu} + \frac{2M_W^2}{v} h W_{\mu}^+ W^{\mu-} + \frac{M_Z^2}{v} h Z_{\mu} Z^{\mu} + \frac{M_W^2}{v^2} h^2 W_{\mu}^+ W^{\mu-} + \frac{M_Z^2}{2v^2} h^2 Z_{\mu} Z^{\mu}$$

$$\mathcal{L}_{\text{Higgs}} = \frac{1}{2} (\partial_{\mu} h)^{2} - \frac{1}{2} m_{h}^{2} h^{2} \cdot \frac{m_{h}^{2}}{2v} h^{3} \cdot \frac{m_{h}^{2}}{8v^{2}} h^{4} + M_{W}^{2} W_{\mu}^{+} W^{\mu-} + \frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu} + \frac{2M_{W}^{2}}{v} h W_{\mu}^{+} W^{\mu-} + \frac{M_{Z}^{2}}{v} h Z_{\mu} Z^{\mu} + \frac{M_{W}^{2}}{v^{2}} h^{2} W_{\mu}^{+} W^{\mu-} + \frac{M_{Z}^{2}}{2v^{2}} h^{2} Z_{\mu} Z^{\mu}$$
Single Higgs to boson couplings
$$\downarrow^{V^{\mu}} \downarrow^{V^{\mu}} \downarrow^{V^{\mu-}} H$$

What about Fermion masses?

> Ad-hoc assumption: Yukawa-coupling of the Higgs field to fermions

 $\mathcal{L}_{ ext{Yukawa}} = -y_f \left(ar{\psi}_L \phi \psi_R + ar{\psi}_R \phi^\dagger \psi_L
ight)$

> Rewrite after EWSB:

$${\cal L}_{
m Yukawa} = -m_f ar{\psi} \psi - rac{m_f}{v} ar{\psi} \psi h$$

> Fermion coupling y_f to Higgs field proportional to fermion mass

Note: y-axis different for different particle types

Higgs Field

Particle mass \propto interaction strength

q

Heaviest known particle: top quark

Electrons interact weakly with the Higgs field \rightarrow small mass

е

Photons do not interact with the Higgs field → massless

> Artistic view of the Higgs field. Image credit: beyondsciencetv.com

Probing the vacuum with the world's largest microscope

- > LHC the only place in the world capable of producing Higgs bosons.
- > ATLAS, CMS two general-purpose detectors capable of capturing Higgs-boson decay products

A closer look at the ATLAS detector

The discovery of a Higgs boson in 2012

- > Higgs boson not stable \rightarrow decays at the beam interaction point into stable particles
- > Two "golden" Higgs boson decay channels:
 - $h \rightarrow \gamma \gamma$
 - $h \rightarrow ZZ^* \rightarrow 4I$

Run: 280862 Event: 53564866 2015-10-02 16:24:44 CEST

The discovery of a Higgs boson in 2012

> Higgs boson not stable \rightarrow decays at the beam interaction point into stable particles

Katharina Behr

- > Two "golden" Higgs boson decay channels:
 - $h \rightarrow \gamma\gamma$
 - $h \rightarrow ZZ^* \rightarrow 4I$

Observation in vy channel

Observation in 4l channel

The discovery of a Higgs boson in 2012

The Standard Model of Particle Physics in 2025

Standard Model of Elementary Particles

SM predictions for the Higgs boson

- > Higgs mass: Higgs is massive and its mass m_h a *free parameter* of the SM.
- > Higgs CP properties: a scalar (CP-even) state
- > Higgs coupling: the higher the mass, the stronger the coupling
 - fermion coupling ~ fermion mass
 - boson coupling ~ (boson mass)²
- > Higgs production and decay modes:
 - Fully determined by above properties
 - Closure tests: check if measured values agree with predictions

We want to scrutinise this new puzzle piece!

Katharina Behr

Why is this interesting? We know the SM is not a complete theory!

Many open questions remain after the Higgs discovery

- > Hierarchy problem: small observed Higgs mass not compatible with "SM-only" scenario
 - Scalar field not protected from loop corrections at higher scales
 - Should drive Higgs mass up to Planck scale
- > Dark matter: makes up 85% of matter in the universe
 - Particle nature unknown
- > Matter-antimatter asymmetry: where is all the antimatter?
 - Equal amounts of matter and antimatter should have been created at the Big Bang

>

...

Katharina Behr

Is the Higgs boson just the last missing piece in the SM...

Standard Model of Elementary Particles

... or can it point us toward phenomena beyond the SM?

Standard Model of Elementary Particles

Let's test if the new particle agrees with the SM predictions!

- > Higgs mass: Higgs is massive and its mass m_h a *free parameter* of the SM.
- > Higgs CP properties: a scalar (CP-even) state
- > Higgs coupling: the higher the mass, the stronger the coupling
 - fermion coupling ~ fermion mass
 - boson coupling ~ (boson mass)²
- > Higgs production and decay modes:
 - Fully determined by above properties
 - Closure tests: check if measured values agree with predictions

Characterising the Higgs boson

- > Discovery based on only a fraction of LHC Run-1 data: ~10 fb⁻¹ of data at $\sqrt{s} = 7$ TeV and 8 TeV
- > Much more data taken since then
- > Tremendous progress in our understanding of the first fundamental spin-0 particle observed in nature

From discovery to characterisation

Page 42

Characterising the Higgs boson

- Comprehensive summary of Higgs property measurements published in Nature in 2022 (Higgs@10)
- > Even more progress made since, e.g. on mass precision

Let's test if the new particle agrees with the SM predictions!

- > Higgs mass: Higgs is massive and its mass m_h a *free parameter* of the SM.
- > Higgs CP properties: a scalar (CP-even) state
- > Higgs coupling: the higher the mass, the stronger the coupling
 - fermion coupling ~ fermion mass
 - boson coupling ~ (boson mass)²
- > Higgs production and decay modes:
 - Fully determined by above properties
 - Closure tests: check if measured values agree with predictions

Measuring the Higgs boson mass

- Golden decay modes $h \rightarrow yy$ and $h \rightarrow ZZ^* \rightarrow 4\ell$ most suitable >
- Excellent mass resolution \rightarrow clear mass peak above a continuum background >
- Example: $h \rightarrow yy$ >
 - Require precise measurement of photon energy and direction in electromagnetic calorimeters
 - Functional fit to data: double-sided Chrystal Ball + second-order polynomial •
 - Separately for photons in barrel and endcap regions •

Measuring the Higgs boson mass

- > Golden decay modes $h \rightarrow yy$ and $h \rightarrow ZZ^* \rightarrow 4\ell$ most suitable
- > Excellent mass resolution \rightarrow clear mass peak above a continuum background
- Statistical combination of both channels (Run 1 + Run 2)

ATLAS Run-2 combination: $m_h = 125.11 \pm 0.09 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \text{ GeV}$ $= 125.11 \pm 0.11 \text{ GeV}$

< 1 permille accuracy!

Cosmological implications of the Higgs boson mass

- > Higgs mass at a remarkable value:
- > SM vacuum close to border between stable and metastable at high energies given measured m_{top}
 - Running trilinear coupling at high energies with large contributions from top loops
 - Negative self-couplings possible at large energies \rightarrow metastability!

Cosmological implications of the Higgs boson mass

- > BSM physics to stabilise vacuum during inflation?
- > Non-minimal coupling of Higgs with gravity?
 - Possibly detectable impact primordial gravitational wave spectrum

Implication of the Higgs boson mass for production and decay

- Production rates fixed for a given value of m_h
- > Dominant production mode: gluon fusion

Implication of the Higgs boson mass for production and decay

- Decay rates fixed for a given value of m_a >
- >
- >

WW

bb

Let's test if the new particle agrees with the SM predictions!

- > Higgs mass: Higgs is massive and its mass m_h a *free parameter* of the SM.
- > Higgs CP properties: a scalar (CP-even) state
- > Higgs coupling: the higher the mass, the stronger the coupling
 - fermion coupling ~ fermion mass
 - boson coupling ~ (boson mass)²
- > Higgs production and decay modes:
 - Fully determined by above properties
 - Closure tests: check if measured values agree with predictions

Higgs boson spin

- > Spin 1 excluded by the fact that Higgs decays into photons
 - Landau-Yang theorem:
 - Spin-1 particle ($J_z = 0, \pm 1$) cannot decay into two identical massless spin-1 particles ($J_z = \pm 1$)
 - Direct consequence of angular momentum conservation and Bose symmetry
- > Spin 2 excluded for a number of different tensor structures (~ 99.9%)
- Spin 0 as predicted for the SM Higgs > 19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) Ľ CMS H Observed 3.5 Post-fit expected: 3 2.5 2 1.5 0.5 0 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0 $|\cos(\theta^*)|$

Higgs CP properties

- > Measure CP properties of Higgs couplings to different SM particles
- > Separately for bosons and fermions

Example: CP properties of decay to t leptons

- > Idea: Higgs CP state determines correlations between τ-lepton spins
- > Spin information about τ leptons from angle between τ leptons and visible decay product (e.g. π^{\pm})
- > Angle ϕ^{CP} sensitive to Higgs CP state

Page 54

Example: CP properties of decay to t leptons

- > Idea: Higgs CP state determines correlations between τ-lepton spins
- > Spin information about τ leptons from angle between τ leptons and visible decay product (e.g. π^{\pm})

> Angle ϕ^{CP} sensitive to Higgs CP state

Higgs CP properties

- > Measure CP properties of Higgs couplings to different SM particles
- > Separately for bosons and fermions

> Results:

- Pure CP odd Higgs coupling to bosons excluded at > 99.9% (ATLAS, CMS)
- Pure CP even Higgs coupling to fermions excluded with > 3 sigma
- Admixtures (CP even and CP odd couplings) still possible

Let's test if the new particle agrees with the SM predictions!

- > Higgs mass: Higgs is massive and its mass m_h a *free parameter* of the SM.
- > Higgs CP properties: a scalar (CP-even) state
- > Higgs coupling: the higher the mass, the stronger the coupling
 - fermion coupling ~ fermion mass
 - boson coupling ~ (boson mass)²
- > Higgs production and decay modes:
 - Fully determined by above properties
 - Closure tests: check if measured values agree with predictions

Higgs boson production measurements

- > Each has a particular final state in addition to the Higgs decay
 - VBF: 2 forward jets
 - VH: 2 leptons from vector boson
 - ttH: two top quarks
- > Consider different possible Higgs decays to enhance sensitivity

Let's test if the new particle agrees with the SM predictions!

- > Higgs mass: Higgs is massive and its mass m_h a *free parameter* of the SM.
- > Higgs CP properties: a scalar (CP-even) state
- > Higgs coupling: the higher the mass, the stronger the coupling
 - fermion coupling ~ fermion mass
 - boson coupling ~ (boson mass)²
- > Higgs production and decay modes:
 - Fully determined by above properties
 - Closure tests: check if measured values agree with predictions

Higgs boson decay measurements

- > Discover each decay mode with $>5\sigma$
 - Can make use of all production modes
- Measure as precisely as possible and compare with SM predictions

Higgs boson decay measurements

Higgs boson with mass 125 GeV)

- > Discover each decay mode with $>5\sigma$
 - Can make use of all production modes
- Measure as precisely as possible and compare with SM predictions

Quiz question: Which of the observed decay modes (green tick marks) was discovered last?

Katharina Behr

Higgs boson decay measurements

Example: discovery of $h \rightarrow bb$ (2018)

- > Latest decay mode to fermions to be discovered, despite largest branching ratio
 - Important because it probes couplings to third generation down-type fermion
- > Challenge: hadronic final state at LHC \rightarrow large background from QCD multijet production
- > Target Zh, Wh production with leptonically decaying boson to suppress QCD background
- > Background still challengingly large → extensive use of ML (deep neural nets)

W/Z

Н

a

W/Z

Higgs boson decay summary

Sood agreement with the SM prediction... within current precision

Katharina Behr

Invisible decays of the Higgs boson

> Higgs boson does not couple directly to neutrinos in the SM

Quiz question: Can you think of another possibility how the Higgs boson can decay invisibly in the SM?

Invisible decays of the Higgs boson

- > Higgs boson does not couple directly to neutrinos in the SM
- > Invisible decays in the SM: $h \rightarrow ZZ^* \rightarrow 4v$
- > Tiny branching ratio: $BR(h \rightarrow inv) = 0.1\%$

Invisible decays of the Higgs boson

- > Higgs boson does not couple directly to neutrinos in the SM
- > Invisible decays in the SM: $h \rightarrow ZZ^* \rightarrow 4v$
- > Tiny branching ratio: $BR(h \rightarrow inv) = 0.1\%$
- > Could be significantly increased if the Higgs boson is a portal to DM \rightarrow direct decays to DM!

Production modes in h \rightarrow inv searches

Page 68

DESY.

Production modes in h \rightarrow inv searches

Vector-boson fusion production of $h \rightarrow inv$

Vector-boson fusion (VBF)

Statistical combination of $h \rightarrow inv$ searches

- > Combine results from different production modes for optimal sensitivity
- > Additionally: results on at $\sqrt{s} = 7$ and 8 TeV data included in previous Run-1 combination

BR(h
$$\rightarrow$$
 inv) < 0.107 (0.077^{+0.030}_{-0.022})
at 95% CL

Statistical combination of $h \rightarrow inv$ searches

- > Interpretation in different Higgs Portal WIMP models (Scalar, Majorana, Vector)
- > Complementary constraints to direct detection results for WIMP masses < 0.5 Higgs mass

Higgs Part 1: Summary

- > Discovery of a Higgs boson by the ATLAS and CMS collaborations at the LHC in 2012
- > Significant progress in characterising the new particle:
 - Mass measured to be \sim 125 GeV with < 1 permille precision
 - Measured Higgs boson properties, like spin, cross sections and decay branching ratios
 - So far, all results consistent with SM predictions within current precision
- > Key missing piece of information: full shape of the Higgs potential
 - Next lecture!

BONUS SLIDES

Vector-boson fusion production of $h \rightarrow inv$

- > Main background from $Z(\nu\nu)$ +jets production
- > Further background from W(lv)+jets production where lepton was not correctly identified
- > Both processes poorly modelled in simulation \rightarrow data-driven estimate

Vector-boson fusion production of $h \rightarrow inv$

- > Combined fit to various signal-enriched regions and regions enriched in Z+jets and W+jets
- > Use Z(II)+jets events to estimate Z(vv)+jets background (same production mode, same kinematics)
- Problem: low statistical power of Z(II) CR
- > Trick: use W(Iv) CR in addition
- Requires accurate estimate of ratio
 of + jets and + jets cross sections
- Provided by dedicated calculation at NLO-QCD + NLO-EW precision derived in the phase of the search
- > Fruitful theory-experiment cooperation!

Vector-boson fusion production of $h \rightarrow inv$

> BR(h \rightarrow inv) < 14.5% observed (10.3% ^{+4.1%}_{-2.8%} expected) at 95% CL

DESY.

The LHC today

- > LHC Page 1: https://op-webtools.web.cern.ch/vistar/vistars.php
- > Collisions at new record energy of 13.6 TeV started on 5th July!

Matter-antimatter imbalance

- Equal amounts of matter and antimatter created in the Big Bang (B=0)
- > Observable universe completely dominated by matter (B>0)
- > What caused this imbalance?

Sakharov conditions

- 1. Baryon number violating processes
- 2. C and CP violation
- 3. Processes out of thermal equilibrium

- Possible in the SM and BSM models
 - E.g. supersymmetry
- Not observed yet
 - Proton decay would be the smoking gun

Matter-antimatter imbalance

- > Equal amounts of matter and antimatter created in the Big Bang (B=0)
- > Observable universe completely dominated by matter (B>0)
- > What caused this imbalance?

Sakharov conditions

- 1. Baryon number violating processes
- 2. C and CP violation
- 3. Processes out of thermal equilibrium

Conditions met in SM e.g. during EWSB

The strong CP problem (1)

- > QCD can in principle violate CP (assuming all quarks are massive)
- > Example of a Yang-Mills theory with a single massive quark

- Strong CP violation in SM QCD (6 massive quarks) via equivalent phase θ^*
- > Would imply non-zero neutron electric dipole moment: $d_N = (5.2 \ 10^{-16} e \ cm) \theta^*$
- > Measurements constrain dipole moment to $|d_N| < 10^{-26} e \text{ cm} \rightarrow \theta^* < 10^{-10} \rightarrow \text{fine-tuning!}$

 \rightarrow fine-tuning!

Cut-and-count method

- > Select (**cut**) events that you expect to be consistent with signal (signal region)
- > **Count** data events in signal region and compare with number of expected SM events
- > Calculate significance of deviation from SM prediction (accounting for uncertainties)

Cut-and-count method

- > Select (**cut**) events that you expect to be consistent with signal (signal region)
- > **Count** data events in signal region and compare with number of expected SM events
- > Calculate significance of deviation from SM prediction (accounting for uncertainties)

- > Advantage: suited for low-stat regions, model agnostic
- **Disadvantage**: single bin \rightarrow vulnerable to fluctuations \rightarrow less sensitive

Monte Carlo event generators in a nutshell

- > Quantum nature of elementary particle interactions: non-deterministic
 - Given initial state can lead to different final states with different probabilities
- > Idea:
 - Calculate probability distribution for a given process (or sub-processes)
 - Random sampling to generate events with particle kinematics according to these distributions

Experimental Techniques

Experimental analysis step by step

- > Pick and study a signal of interest
- > Select subset of events enriched in signal (signal region)
- > Estimate backgrounds and systematic uncertainties

> Test agreement between SM prediction and data

How to search for BSM signals?

Isolate small signal from huge dataset

T.G. McCarthy

>

How to search for BSM signals?

Select signal-like events

- > Define criteria that characterise chosen signal in detector
- > Apply selection criteria to reduce background
- > Signal-enriched region (signal region)

Exercise

- > Define a signal region for semi-leptonic ttbar decay
- > For simplicity assume that charged lepton is an electron or muon

Exercise

> Define a signal region for semi-leptonic ttbar decay

- > Exactly 1 electron or muon
- Missing energy (from the neutrino)
- > At least 4 jets
- Bonus 1: 2 jets identified as b-jets
- > Bonus 2:
 - Combined mass of 2 jets = W mass
 - Combined mass of 3 jets = top mass

Exercise: Solution

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

3-jet mass (GeV/c2)

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Can refine signal regions using machine-learning algorithms
 - Exploit small differences in various kinematic variables
 - Exploit correlations

A final signal region

Event simulation

- > Simulate possible signals based on theoretical models
 - Optimise sensitivity of searches
- > Simulate background processes
 - Compare predictions to data and look for deviations
 - Some background processes can be simulated very accurately...
 - ... others not (see data-driven estimates later)
- > Estimate systematic uncertainties
 - Create different background predictions within experimental uncertainties
 - E.g. top mass known with ±1 GeV uncertainty
 - → Simulate top quark pair production for m_{top} (central) and m_{top} (central)±1 GeV

Simulation step by step

> Hard processes (large momentum transfers): perturbative QCD

- hard scattering
- (QED) initial/final state radiation

Simulation step by step

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting

Simulation step by step

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Think outside the (black)box!

- > Many different event generators available for HEP/LHC
 - Choice depends on process, required precision, ...
 - E.g. matrix-element generators: MadGraph, Powheg
 - E.g. matrix-element + parton-shower generators: Pythia, Herwig
 - Important to understand differences and subtleties to not treat them as blackboxes!

"[...] remember that the programs **do not represent a dead collection of established truths**, but rather one of many possible approaches to the problem of multiparticle production in high-energy physics, at the frontline of current research. **Be critical!**"

From the manual of the Pythia5 MC generator

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...
- > Specifically for hadron colliders (LHC, Tevatron, ...):
 - **Underlying Event**: simulate interactions of additional partons within same two protons

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...
- > Specifically for hadron colliders (LHC, Tevatron, ...):
 - **Underlying Event**: simulate interactions of additional partons within same two protons
 - **Pile-up**: simulate interactions of additional protons in the same bunch crossing

> Further reading:

lecture by M. Seymour and M. Marx [link]

Estimating background processes from data

- > Simulation not always feasible for estimating background processes
 - Instrumental backgrounds (related to detector effects)
 - Jets with high EM component faking electrons
 - Backgrounds from detector noise
 - •

. . .

- Processes with large cross-section that would require large MC statistics
 - Mostly multijets at the LHC
- Known modeling limitations
 - Missing higher-order processes
 - •
- > Use fully data-driven estimates or data-driven corrections

Sidebands

- > Assume known signal region (= location in the spectrum)
- > Fit background in sidebands (= adjoining parts of the spectrum, signal depleted)
- > Extrapolate to signal region

Control Regions

- > Same idea as with sidebands but using a modified selection to define a control region
 - Orthogonal to signal region, signal depleted

- > Must be carefully designed to
 - Be signal depleted

. . .

- Be enriched in background of interest
- Close enough to SR to avoid biases

A final signal region

Systematic uncertainties

- > Various different sources:
 - Modeling uncertainties, e.g. unknown higher-order corrections
 - Experimental uncertainties, e.g. uncertainties on electron energy measurement
- > Propagate to final spectrum
- > Uncertainties degrade sensitivity to signal

A final signal region

What are we looking for?

> Most generally put: we search for a significant deviation from the SM prediction

- > Different search strategies
 - Cut-and-count method
 - Bump hunt
 - Tail hunt

. . .

> Each comes with its own set of advantages/disadvantages!

Bump Hunting

- > Search for a localised deviation in the distribution of a variable of interest
 - Typically: invariant mass

Bump Hunting

- > Search for a localised deviation in the distribution of a variable of interest
 - Typically: invariant mass
- > Most recent successful example:
 - Higgs boson discovery (2012, CERN)

Tail Hunting

- > Search for a tail enhancement in the distribution of a variable of interest
- > Typical examples:
 - Resonances beyond reach of the LHC

Tail Hunting

- Search for a tail enhancement in the distribution of a variable of interest >
- Typical examples: >
 - Resonances beyond reach of the LHC
 - Non-resonant production of new particles

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

 10^{7}

 p_{τ}^{recoil} [GeV]

Data

Standard Model w. unc.

 $Z(\rightarrow \nu\nu)$ + jets

Tail Hunting

- > Search for a tail enhancement in the distribution of a variable of interest
- > Typical examples:
 - Resonances beyond reach of the LHC
 - Non-resonant production of new particles
- > Advantages:
 - Sensitive to processes that cannot be identified by bump hunts
- > **Disadvantages**:
 - Tails of distributions suffer from low statistics
 - Often sizeable systematic uncertainties
 - E.g. due to missing higher-order calculations

What if new particles are less obvious to spot?

> Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$

What if new particles are less obvious to spot?

- > Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$
- > Quantum mechanics: two processes with same initial and same final state will interfere!
 - $|s + b|^2 = |s|^2 + 2 \operatorname{Re}(s b) + |b|^2 = S + I + B$ → Interference!!

What if new particles are less obvious to spot?

- > Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$
- > Quantum mechanics: two processes with same initial and same final state will interfere!
 - $|s + b|^2 = |s|^2 + 2 \operatorname{Re}(s b) + |b|^2 = S + I + B$ → Interference!!

Beyond Bump Hunts

- > Prominent example: decay of a heavy Higgs boson A/H to a top-antitop quark pair
- > Need cutting edge methods \rightarrow on-going research @ DESY

A final signal region

Statistical analysis

- > Two statistical analysis stages in BSM searches:
 - Quantify agreement between data and SM prediction (*"Any interesting deviation?"*)
 - Quantify (dis)agreement between data and BSM hypothesis ("limit setting")

Step 1: quantify agreement with SM prediction

- > Null hypothesis H₀: SM only, no BSM
- > **p-value**: probability that H_0 produces deviation at least as extreme as the one observed
- > Simple example: cut-and-count

Step 1: quantify agreement with SM prediction

- > Null hypothesis H₀: SM only, no BSM
- > **p-value**: probability that H_0 produces deviation at least as extreme as the one observed
- > Or quote **significance** instead:

 $Z = \Phi^{-1}(1-p)$

> where Φ^{-1} is inverse of cumulative Gaussian

- > If excess was found: test agreement with BSM ... and open the champagne ;)
- > If no excess was found: test degree to which H₁ is excluded by data (limit setting)

- > Usually, setup is more complicated: many bins, many signal regions
- > Construct a likelihood function that quantifies data/MC agreement in all bins

Further reading: Lecture by G. Cowan [link]

- > CL(s+b) probability to falsely reject signal because it is too similar to background
- > Confidence level
 - H_1 excluded at 95% CL if CL(s+b) < 0.05

- > Problem:
 - Danger to falsely reject H_1 even if separation between H_1 and H_0 is poor, i.e. sensitivity to H_1 is low
- > Solution:
 - CL(s) = CL(s+b)/[1-CL(b)]
- > Confidence level
 - H_1 excluded at 95% CL if CL(s) < 0.05

A final result

> The famous "Brazilian" plot, showing observed and expected exclusion limits with error bands

Where do we stand?

- > No significant (5 σ) deviation from the SM observed so far.
- > Results constrain BSM models...
- > ... and point to uncharted territory!

Muon g-2 (1)

> Anomalous magnetic moment of the muon in analogy to that of the electron

 $\vec{\mu} = g \, \frac{q}{2m} \, \vec{S}$

- > Loop quantum corrections: $g \neq 2$
- > Anomalous magnetic moment: a = (g-2)/2

> Sensitive to large range of possible quantum corrections, including possible BSM contributions

Muon g-2 (2)

- > Storage ring with polarised muons in magnetic field \rightarrow measure precession frequency
- > Measurements at BNL (2004) first revealed tension with SM of 2.6 σ significance
- > Confirmed by new Fermilab measurement (2021) at 4.2 σ combined significance
 - More data is being taken and analysed

Missing pieces: gravity

- > Gravity not described by SM
 - Various approaches to describe gravity with a quantum field theory have failed
 - Theory of Everything: SM + General Relativity
 - Unification at Planck scale 10¹⁹ GeV
 - Electroweak force and gravity are of the same order

Missing pieces: dark matter

- > Various sources of astrophysical evidence for existence of DM
 - Galactic rotation curves
 - Motion of galactic clusters
 - Gravitational lensing

. . .

Missing pieces: dark matter and dark energy

- No candidates for dark matter (DM) or dark energy (DE)
 - DM and DE content determined from CMB as measured by Planck satellite

Missing pieces: dark matter and dark energy

- No candidates for dark matter (DM) or dark energy (DE)
 - DM and DE content determined from CMB as measured by Planck satellite

Conceptual issues within the Standard Model

- > Many assumptions introduced ad-hoc, without underlying theory motivation
 - 26 free parameters, including all fermion masses
 - Why three lepton and quark generations?
 - Why do the fermion masses differ by at least 12 orders of magnitude?

Matter-antimatter imbalance

- > Equal amounts of matter and antimatter created in the Big Bang (B=0)
- > Observable universe completely dominated by matter (B>0)
- > What caused this imbalance?

> <u>Sakharov conditions</u>

- 1. Baryon number violating processes
- 2. C and CP violation
- 3. Processes out of thermal equilibrium

• CP violation observed in the SM

- Kaon and B-meson system
- Not sufficiently large to explain imbalance
- Need additional sources of CP violation!
 - E.g. from neutrino sector
 - E.g. from extended Higgs sector models

Matter-antimatter imbalance

- > Equal amounts of matter and antimatter created in the Big Bang (B=0)
- > Observable universe completely dominated by matter (B>0)
- > What caused this imbalance?

> <u>Sakharov conditions</u>

- 1. Baryon number violating processes
- 2. C and CP violation
- 3. Processes out of thermal equilibrium

Excellent review of Sakharov conditions by D. Perepelitska [link]

The strong CP problem (1)

- > QCD Lagrangian for massive quarks contains a CP violating term
- > Amount of CP violation depends on parameter θ^* , which can take values in [0,1]

- > Strong CP violation \rightarrow non-zero neutron electric dipole moment: $d_N = (5.2 \ 10^{-16} e \ cm) \theta^*$
- > Measured from Larmor precession of neutron spin in antiparallel and parallel E and M fields
- > Measurements constrain dipole moment to $|d_N| < 10^{-26} e \text{ cm} \rightarrow \theta^* < 10^{-10}$

> $\theta^* = 0$ indicates extreme fine-tuning

The strong CP problem (2)

- > Possible solution via the Peccei-Quinn mechanism
- > Relate θ^* to a new physical field with a global chiral U(1) symmetry
- > Field has tilted Mexican hat potential
- > Spontaneous breaking of $U(1) \rightarrow$ pseudo-Goldstone boson: axion
- > VEV of axion field leads to $\theta^* = 0$
 - No fine tuning!

> Axion also a dark matter candidate (see later).

The hierarchy problem

- > SM contains an elementary scalar particle (Higgs)
 - Vulnerable to quantum loop corrections of arbitrary high scales

- > No BSM physics \rightarrow SM valid up to Planck scale O(10¹⁹ GeV)
 - Higgs mass should be 16 orders of magnitude larger than the measured 125 GeV

The hierarchy problem

- > SM contains an elementary scalar particle (Higgs)
 - Vulnerable to quantum loop corrections of arbitrary high scales

- > No BSM physics \rightarrow SM valid up to Planck scale O(10¹⁸ GeV)
 - Higgs mass should be 16 orders of magnitude larger than the measured 125 GeV
- > BSM solutions:

. . .

- Supersymmetry: additional loops to cancel divergent loops
- Extra dimensions
- Composite Higgs models