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> Part 1: The vacuum is not empty

– The Higgs boson in the Standard Model

– Characterization of the Higgs boson since its discovery

> Part 2: What is the fingerprint of the vacuum?

– Unravelling the Higgs potential

– Higgs boson pair production

– Extra: Triple Higgs production

– Outlook: the future of the LHC and beyond

> Part 3: Is there even more to the vacuum?

– Extended Higgs sectors

– Extra: news from the ttbar threshold

– Long-lived particles and the Higgs

Katharina Behr

Outline

A

H+

h

h h

h

H

H-



Page 3

> Part 1: The vacuum is not empty

– The Higgs boson in the Standard Model

– Characterization of the Higgs boson since its discovery

> Part 2: What is the fingerprint of the vacuum?

– Unravelling the Higgs potential

– Higgs boson pair production

– Extra: Triple Higgs production

– Outlook: the future of the LHC and beyond

> Part 3: Is there even more to the vacuum?

– Extended Higgs sectors

– Extra: news from the ttbar threshold

– Long-lived particles and the Higgs

Katharina Behr

Outline

h





What is the vacuum?



Artistic view of the Higgs field.  
Image credit: beyondsciencetv.com

Higgs Field

Particle mass ∝ interaction strength

Heaviest known particle: top quark

Electrons interact weakly 
with the Higgs field 

→small mass

Photons do not interact  
with the Higgs field

→ massless
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Why do we need a Higgs field?

Katharina Behr
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Why do we need a Higgs field?
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SU(3)C x SU(2)L x U(1)Y 

strong
force

electroweak
force

Gauge theory:

Each gauge group 
represents a symmetry of 
the Standard Model

Each symmetry corresponds 
to a conserved charge

E.g. colour charge 
for the strong force

Noether’
theorem
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Why do we need a Higgs field?
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SU(3)C x SU(2)L x U(1)Y 

strong
force

electroweak
force

Gauge theory:

Each gauge group 
represents a symmetry of 
the Standard Model

Each symmetry corresponds 
to a conserved charge

E.g. colour charge 
for the strong force

Noether’
theorem

Caveat:
Assumes massless 
gauge bosons!

Massless: g, y

Very massive: W, Z
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> Example: U(1) theory with field Aμ

Katharina Behr

How can we make gauge bosons massive?

Kinetic term

Invariant under 
gauge transformation

Not invariant under 
gauge transformation

Mass term



Page 12

> Add a new scalar field ɸ to the SM: Higgs field

> Trick: this field has a Mexican hat potential

● Potential as a whole is symmetric under gauge transformation
● Its ground state(s) are not

> Spontaneous symmetry breaking!

> Dynamically generates W and  Z boson masses

Katharina Behr

The (Brout-Englert-) Higgs mechanism: idea

Gauge transformation
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> Extend Lagrangian by Higgs kinetic and potential terms:                       Invariant under gauge transformation:

Katharina Behr

Kinetic term

The (Brout-Englert-) Higgs mechanism: Lagrangian

Potential term

You are 
here!
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> Extend Lagrangian by Higgs kinetic and potential terms:                       Invariant under gauge transformation:

> Here for simplicity: complex scalar field
(2 degrees of freedom)

> In fact: complex iso-spin doublet
(4 degrees of freedom)

Katharina Behr

The (Brout-Englert-) Higgs mechanism: Lagrangian

You are 
here!
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> Ground state(s) with non-zero vacuum expectation value

> v determined by EW precision measurements

Katharina Behr

Spontaneous symmetry breaking

You are 
here!

Vacuum expectation value
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> Ground state(s) with non-zero vacuum expectation value

> v determined by EW precision measurements

> “Distance” of ground-state from zero:

Katharina Behr

Spontaneous symmetry breaking

Vacuum expectation value
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> Expand around the EW vacuum (minimum)

> Reparameterise in terms of Higgs mass mh and v

> Only free parameter of Higgs mechanism: mh

Katharina Behr

How does this relate to physical quantities?

λ4λ3
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> Rewrite original Lagrangian after symmetry breaking and expansion

Katharina Behr

Gauge boson mass!

Mass term!

One degree of freedom field ɸ:
absorbed into this mass term*

Second degree of freedom:
 yields the Higgs field

*For experts: This degree of freedom would show 
up as a massless scalar “Goldstone” boson if we 
had not expanded around the minimum.
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> Expanding around the vacuum expectation value

Katharina Behr

The full Higgs Lagrangian

- --



Page 21

> Three degrees of freedom “eaten” by boson fields during EWSB → W and Z masses

Katharina Behr

The full Higgs Lagrangian

Higgs potential

λ3 λ4 Trilinear and quartic self-couplings
(determine shape of potential)

→ Tomorrow’s lecture!

- --
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> Three degrees of freedom “eaten” by boson fields during EWSB → W and Z masses

Katharina Behr

W mass term

- --

The full Higgs Lagrangian
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> Three degrees of freedom “eaten” by boson fields during EWSB → W and Z masses

Katharina Behr

Z mass term

- --

The full Higgs Lagrangian
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> Three degrees of freedom “eaten” by boson fields during EWSB → W and Z masses

Katharina Behr

Single Higgs to boson couplings
→ more on this later!

- --

The full Higgs Lagrangian
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> Three degrees of freedom “eaten” by boson fields during EWSB → W and Z masses

Katharina Behr

λVVhh
→ Tomorrow’s lecture!

Di-Higgs to di-boson coupling
(not observed yet)

- --

The full Higgs Lagrangian
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> Ad-hoc assumption: Yukawa-coupling of the Higgs field to fermions

> Rewrite after EWSB:

> Fermion coupling yf to Higgs field proportional to fermion mass

Katharina Behr

Note: y-axis different for 
different particle types

What about Fermion masses?



Artistic view of the Higgs field.  
Image credit: beyondsciencetv.com

Higgs Field

Particle mass ∝ interaction strength

Heaviest known particle: top quark

Electrons interact weakly 
with the Higgs field 

→small mass

Photons do not interact  
with the Higgs field

→ massless
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> LHC - the only place in the world capable of producing Higgs bosons.

> ATLAS, CMS – two general-purpose detectors capable of capturing Higgs-boson decay products

Katharina Behr

Probing the vacuum with the world’s largest microscope

CMS

ATLAS
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A closer look at the ATLAS detector
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> Higgs boson not stable → decays at the beam interaction point into stable particles

> Two “golden” Higgs boson decay channels:

● h → ɣɣ
● h → ZZ* → 4l

Katharina Behr

The discovery of a Higgs boson in 2012
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> Higgs boson not stable → decays at the beam interaction point into stable particles

> Two “golden” Higgs boson decay channels:

● h → ɣɣ
● h → ZZ* → 4l

Katharina Behr

The discovery of a Higgs boson in 2012

Observation in ɣɣ channel Observation in 4l channel 
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The discovery of a Higgs boson in 2012
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The Standard Model of Particle Physics in 2025

Katharina Behr
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> Higgs mass: Higgs is massive and its mass mh a free parameter of the SM.

> Higgs CP properties: a scalar (CP-even) state

> Higgs coupling: the higher the mass, the stronger the coupling

● fermion coupling ~ fermion mass
● boson coupling ~ (boson mass)2

> Higgs production and decay modes:

● Fully determined by above properties
● Closure tests: check if measured values agree with predictions

Katharina Behr

SM predictions for the Higgs boson
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We want to scrutinise this new puzzle piece!

Katharina Behr
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Why is this interesting?
We know the SM is not a complete theory!

Katharina Behr
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> Hierarchy problem: small observed Higgs mass not compatible with “SM-only” scenario

● Scalar field not protected from loop corrections at higher scales
● Should drive Higgs mass up to Planck scale

> Dark matter: makes up 85% of matter in the universe

● Particle nature unknown

> Matter-antimatter asymmetry: where is all the antimatter?

● Equal amounts of matter and antimatter should have been created at the Big Bang

> ...

Katharina Behr

Many open questions remain after the Higgs discovery

More in BSM lectures!
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Is the Higgs boson just the last missing piece in the SM...

Katharina Behr
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… or can it point us toward phenomena beyond the SM?

Katharina Behr

DM
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> Higgs mass: Higgs is massive and its mass mh a free parameter of the SM.

> Higgs CP properties: a scalar (CP-even) state

> Higgs coupling: the higher the mass, the stronger the coupling

● fermion coupling ~ fermion mass
● boson coupling ~ (boson mass)2

> Higgs production and decay modes:

● Fully determined by above properties
● Closure tests: check if measured values agree with predictions

Katharina Behr

Let’s test if the new particle agrees with the SM predictions!
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> Discovery based on only a fraction of LHC Run-1 data: ~10 fb-1 of data at √s = 7 TeV and 8 TeV

> Much more data taken since then

> Tremendous progress in our understanding of the first fundamental spin-0 particle observed in nature

Katharina Behr

Higgs discovery Today

Characterising the Higgs boson

Observation in 4l channel 
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From discovery to characterisation

Summer 
2012

Winter 
2012

20182016Run 2

Run 1

Run 3 
on-going...
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> Comprehensive summary of Higgs property measurements published in Nature in 2022 (Higgs@10)

> Even more progress made since, e.g. on mass precision

Katharina Behr

Higgs discovery Today

Characterising the Higgs boson

Observation in 4l channel Higgs@10

mailto:Higgs@10
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> Higgs mass: Higgs is massive and its mass mh a free parameter of the SM.

> Higgs CP properties: a scalar (CP-even) state

> Higgs coupling: the higher the mass, the stronger the coupling

● fermion coupling ~ fermion mass
● boson coupling ~ (boson mass)2

> Higgs production and decay modes:

● Fully determined by above properties
● Closure tests: check if measured values agree with predictions

Katharina Behr

Let’s test if the new particle agrees with the SM predictions!
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> Golden decay modes h→yy and h → ZZ* → 4ℓ most suitable

> Excellent mass resolution → clear mass peak above a continuum background

> Example: h→yy

● Require precise measurement of photon energy and direction in electromagnetic calorimeters
● Functional fit to data: double-sided Chrystal Ball + second-order polynomial
● Separately for photons in barrel and endcap regions

Katharina Behr

Measuring the Higgs boson mass
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> Golden decay modes h→yy and h → ZZ* → 4ℓ most suitable

> Excellent mass resolution → clear mass peak above a continuum background

> Statistical combination of both channels (Run 1 + Run 2)

Katharina Behr

Measuring the Higgs boson mass

Phys. Rev. Lett. 131 (2023) 251802

ATLAS Run-2 combination:
mh = 125.11 ± 0.09 (stat.) ± 0.06 (syst.) GeV
     = 125.11 ± 0.11 GeV

< 1 permille accuracy!

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.251802
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> Higgs mass at a remarkable value: 

> SM vacuum close to border between stable and metastable at high energies given measured mtop

● Running trilinear coupling at high energies with large contributions from top loops
● Negative self-couplings possible at large energies → metastability!

Katharina Behr

Cosmological implications of the Higgs boson mass
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> BSM physics to stabilise vacuum during inflation?

> Non-minimal coupling of Higgs with gravity?

● Possibly detectable impact primordial gravitational wave spectrum

Katharina Behr

Cosmological implications of the Higgs boson mass
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> Production rates fixed for a given value of mh

> Dominant production mode: gluon fusion

Katharina Behr

Implication of the Higgs boson mass for production and decay

87.2% 6.8% 4.1% 1.9%
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> Decay rates fixed for a given value of ma

> Assuming SM Yukawa couplings

> Dominant decay mode: h → bb

Katharina Behr

Implication of the Higgs boson mass for production and decay
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> Higgs mass: Higgs is massive and its mass mh a free parameter of the SM.

> Higgs CP properties: a scalar (CP-even) state

> Higgs coupling: the higher the mass, the stronger the coupling

● fermion coupling ~ fermion mass
● boson coupling ~ (boson mass)2

> Higgs production and decay modes:

● Fully determined by above properties
● Closure tests: check if measured values agree with predictions

Katharina Behr

Let’s test if the new particle agrees with the SM predictions!
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> Spin 1 excluded by the fact that Higgs decays into photons

● Landau-Yang theorem: 

– Spin-1 particle (Jz = 0, ±1) cannot decay into two identical massless spin-1 particles (Jz = ±1)
– Direct consequence of angular momentum conservation and Bose symmetry

> Spin 2 excluded for a number of different tensor structures (~ 99.9%)

> Spin 0 as predicted for the SM Higgs

Katharina Behr

Higgs boson spin
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Higgs CP properties

> Measure CP properties of Higgs couplings to different SM particles 

> Separately for bosons and fermions
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Example: CP properties of decay to τ leptons

> Idea: Higgs CP state determines correlations between τ-lepton spins

> Spin information about τ leptons from angle between τ leptons 
and visible decay product (e.g. π±)

> Angle ɸCP
 sensitive to Higgs CP state

Angle between τ
decay planes 
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Example: CP properties of decay to τ leptons

> Idea: Higgs CP state determines correlations between τ-lepton spins

> Spin information about τ leptons from angle between τ leptons 
and visible decay product (e.g. π±)

> Angle ɸCP
 sensitive to Higgs CP state

Angle between τ
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Higgs CP properties

> Measure CP properties of Higgs couplings to different SM particles 

> Separately for bosons and fermions

> Results:

● Pure CP odd Higgs coupling to bosons excluded at > 99.9% (ATLAS, CMS)
● Pure CP even Higgs coupling to fermions excluded with > 3 sigma
● Admixtures (CP even and CP odd couplings) still possible
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> Higgs mass: Higgs is massive and its mass mh a free parameter of the SM.

> Higgs CP properties: a scalar (CP-even) state

> Higgs coupling: the higher the mass, the stronger the coupling

● fermion coupling ~ fermion mass
● boson coupling ~ (boson mass)2

> Higgs production and decay modes:

● Fully determined by above properties
● Closure tests: check if measured values agree with predictions

Katharina Behr

Let’s test if the new particle agrees with the SM predictions!
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Higgs boson production measurements

> Each has a particular final state in addition to the Higgs decay

● VBF: 2 forward jets
● VH: 2 leptons from vector boson
● ttH: two top quarks

> Consider different possible Higgs decays to enhance sensitivity
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> Higgs mass: Higgs is massive and its mass mh a free parameter of the SM.

> Higgs CP properties: a scalar (CP-even) state

> Higgs coupling: the higher the mass, the stronger the coupling

● fermion coupling ~ fermion mass
● boson coupling ~ (boson mass)2

> Higgs production and decay modes:

● Fully determined by above properties
● Closure tests: check if measured values agree with predictions

Katharina Behr

Let’s test if the new particle agrees with the SM predictions!
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Higgs boson decay measurements

> Discover each decay mode with >5σ

● Can make use of all production modes

> Measure as precisely as possible and 
compare with SM predictions
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Higgs boson decay measurements

> Discover each decay mode with >5σ

● Can make use of all production modes

> Measure as precisely as possible and 
compare with SM predictions

Quiz question: 
Which of the observed decay modes 
(green tick marks) was discovered last?
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Higgs boson decay measurements
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Example: discovery of h → bb (2018)

> Latest decay mode to fermions to be discovered, despite largest branching ratio

● Important because it probes couplings to third generation down-type fermion

> Challenge: hadronic final state at LHC → large background from QCD multijet production

> Target Zh, Wh production with leptonically decaying boson to suppress QCD background

> Background still challengingly large → extensive use of ML (deep neural nets)
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Higgs boson decay summary

> Good agreement with the SM prediction… within current precision
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> Higgs boson does not couple directly to neutrinos in the SM

Invisible decays of the Higgs boson

Katharina Behr

Quiz question: 
Can you think of another possibility how
the Higgs boson can decay invisibly
in the SM?



Page 66

> Higgs boson does not couple directly to neutrinos in the SM

> Invisible decays in the SM: h→ ZZ* → 4ν

> Tiny branching ratio: BR(h→inv) = 0.1% 

Invisible decays of the Higgs boson

Katharina Behr
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> Higgs boson does not couple directly to neutrinos in the SM

> Invisible decays in the SM: h→ ZZ* → 4ν

> Tiny branching ratio: BR(h→inv) = 0.1% 

> Could be significantly increased if the Higgs boson is a portal to DM → direct decays to DM!

Invisible decays of the Higgs boson

Katharina Behr

 SM Higgs boson

SM DM
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Production modes in h→inv searches 

Vector-boson fusion (VBF) Top-quark associated (tth)

Gluon fusion

Higgs strahlung (Zh)

h
h

h

h

VBF + photon

Katharina Behr



Page 69

Production modes in h→inv searches 

Vector-boson fusion (VBF) Top-quark associated (tth)

Gluon fusion

Higgs strahlung (Zh)

h
h

h

h

VBF + photon

Katharina Behr

Quiz question: 
Which production mode do you expect
to be most sensitive to h→ inv decays?
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Vector-boson fusion production of h→inv

Vector-boson fusion (VBF)

h

Katharina Behr
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Statistical combination of h→inv searches

> Combine results from different production modes for optimal sensitivity

> Additionally: results on at √s = 7 and 8 TeV data included in previous Run-1 combination

BR(h→inv) < 0.107 (0.077+0.030
−0.022

)

at 95% CL

Katharina Behr

Phys. Lett. B 842 (2023) 137963

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-05/
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Statistical combination of h→inv searches

> Interpretation in different Higgs Portal WIMP models (Scalar, Majorana, Vector)

> Complementary constraints to direct detection results for WIMP masses < 0.5 Higgs mass

Phys. Lett. B 842 (2023) 137963

Katharina Behr

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-05/
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> Discovery of a Higgs boson by the ATLAS and CMS collaborations at the LHC in 2012

> Significant progress in characterising the new particle:

● Mass measured to be ~125 GeV with < 1 permille precision
● Measured Higgs boson properties, like spin, cross sections and decay branching ratios
● So far, all results consistent with SM predictions within current precision

> Key missing piece of information: full shape of the Higgs potential

● Next lecture!

Higgs Part 1: Summary

Katharina Behr
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BONUS SLIDES

Katharina Behr
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Vector-boson fusion production of h→inv

Katharina Behr

> Main background from Z(νν)+jets production

> Further background from W(lν)+jets production where lepton was not correctly identified

> Both processes poorly modelled in simulation → data-driven estimate

Strong Z

EW Z
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Vector-boson fusion production of h→inv

Katharina Behr

> Combined fit to various signal-enriched regions and regions enriched in Z+jets and W+jets

> Use Z(ll)+jets events to estimate Z(νν)+jets background (same production mode, same kinematics)

> Problem: low statistical power of
Z(ll) CR

> Trick: use W(lν) CR in addition

> Requires accurate estimate of ratio
of + jets and + jets cross sections

> Provided by dedicated calculation at
NLO-QCD + NLO-EW precision
derived in the phase of the search

> Fruitful theory-experiment cooperation!
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Vector-boson fusion production of h→inv

Katharina Behr

> BR(h→inv) < 14.5% observed (10.3% +4.1%
−2.8% 

expected) at 95% CL
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> LHC Page 1: https://op-webtools.web.cern.ch/vistar/vistars.php

> Collisions at new record energy of 13.6 TeV started on 5th July!

The LHC today

Katharina Behr

https://op-webtools.web.cern.ch/vistar/vistars.php
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> Equal amounts of matter and antimatter created in the Big Bang (B=0)

> Observable universe completely dominated by matter (B>0)

> What caused this imbalance?

> Sakharov conditions

1. Baryon number violating processes

2. C and CP violation

3. Processes out of thermal equilibrium

Matter-antimatter imbalance

● Possible in the SM and BSM models
● E.g. supersymmetry 

● Not observed yet
● Proton decay would be the smoking gun

Katharina Behr
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> Equal amounts of matter and antimatter created in the Big Bang (B=0)

> Observable universe completely dominated by matter (B>0)

> What caused this imbalance?

> Sakharov conditions

1. Baryon number violating processes

2. C and CP violation

3. Processes out of thermal equilibrium

Matter-antimatter imbalance

Conditions met in SM e.g. during EWSB

Katharina Behr
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> QCD can in principle violate CP (assuming all quarks are massive)

> Example of a Yang-Mills theory with a single massive quark

> Strong CP violation in SM QCD (6 massive quarks) via equivalent phase θ*

> Would imply non-zero neutron electric dipole moment: dN = (5.2 10-16 e cm) θ*

> Measurements constrain dipole moment to |dN| < 10-26 e cm → θ* < 10-10 → fine-tuning!

The strong CP problem (1)

Potentially CP violating, unless θ = - θ’
→ fine-tuning!

Katharina Behr



Page 82

> Select (cut) events that you expect to be consistent with signal (signal region)

> Count data events in signal region and compare with number of expected SM events

> Calculate significance of deviation from SM prediction (accounting for uncertainties)

Cut-and-count method

E
ve

n
t 

co
u

n
t

No significant 
deviation

Signal region

Expected SM 
Background

Significant 
deviation!

Signal region
Katharina Behr
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> Select (cut) events that you expect to be consistent with signal (signal region)

> Count data events in signal region and compare with number of expected SM events

> Calculate significance of deviation from SM prediction (accounting for uncertainties)

> Advantage: suited for low-stat regions, model agnostic

> Disadvantage: single bin→vulnerable to fluctuations→less sensitive

Cut-and-count method

Expected SM 
Background

Significant 
deviation!

Signal region
Katharina Behr
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> Quantum nature of elementary particle interactions: non-deterministic

– Given initial state can lead to different final states with different probabilities

> Idea:

– Calculate probability distribution for a given process (or sub-processes)

– Random sampling to generate events with particle kinematics according to these distributions

Monte Carlo event generators in a nutshell

Katharina Behr
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Experimental Techniques

Katharina Behr
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> Pick and study a signal of interest

> Select subset of events enriched in signal (signal region)

> Estimate backgrounds and systematic uncertainties

> Test agreement between SM prediction and data

Experimental analysis step by step

Katharina Behr
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> Isolate small signal from huge dataset

How to search for BSM signals? 

T.G. McCarthy

Katharina Behr
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> Isolate small signal from huge dataset

How to search for BSM signals? 

T.G. McCarthy

Katharina Behr
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> Define criteria that characterise chosen signal in detector

> Apply selection criteria to reduce background

> Signal-enriched region (signal region)

Select signal-like events

Trigger selection 
(online)

Coarse pre-
selection (offline)

Tight signal region 
selection (offline)

Katharina Behr
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> Define a signal region for semi-leptonic ttbar decay

> For simplicity assume that charged lepton is an electron or muon

Exercise

Katharina Behr
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> Define a signal region for semi-leptonic ttbar decay

Exercise

Katharina Behr
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> Exactly 1 electron or muon

> Missing energy (from the neutrino)

> At least 4 jets

> Bonus 1: 2 jets identified as b-jets

> Bonus 2: 
– Combined mass of 2 jets = W mass
– Combined mass of 3 jets = top mass 

Exercise: Solution

Katharina Behr
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Exercise: Solution

Katharina Behr
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Signal vs backgrounds

Signal SM ttbar production
Irreducible background

SM W+jets production
Reducible background

Katharina Behr
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> Apply selection criteria (cuts) to reduce background

> Signal-enriched region (signal region)

> Additional cuts based on differences in kinematic distributions

Signal region definition

T.G. McCarthy

3-jet mass
Katharina Behr
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> Apply selection criteria (cuts) to reduce background

> Signal-enriched region (signal region)
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> Apply selection criteria (cuts) to reduce background

> Signal-enriched region (signal region)

> Additional cuts based on differences in kinematic distributions
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Signal region definition

Katharina Behr
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> Apply selection criteria (cuts) to reduce background

> Signal-enriched region (signal region)

> Additional cuts based on differences in kinematic distributions

T.G. McCarthy

3-jet mass

Signal region definition

Katharina Behr
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> Can refine signal regions using machine-learning algorithms

– Exploit small differences in various kinematic variables

– Exploit correlations

Signal region definition

Katharina Behr
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A final signal region

Invariant mass of top pair

Katharina Behr
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> Simulate possible signals based on theoretical models

– Optimise sensitivity of searches

> Simulate background processes

– Compare predictions to data and look for deviations

– Some background processes can be simulated very accurately…

– … others not (see data-driven estimates later)

> Estimate systematic uncertainties

– Create different background predictions within experimental uncertainties

– E.g. top mass known with ±1 GeV uncertainty

→  Simulate top quark pair production for mtop(central) and mtop(central)±1 GeV

Event simulation

Katharina Behr



Page 102

Simulation step by step

e+

e-

γ/Z

t

tbar

g

g

> Hard processes (large momentum transfers): perturbative QCD

Katharina Behr
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Simulation step by step

b

bbar

W+

W-

> Parton shower (softer momenta):                                                                                                           
 non-perturbative QCD

Katharina Behr
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Simulation step by step

> Hadronisation (soft, low energy):                                                                                                            
 non-perturbative QCD                                                                                                                                   

Katharina Behr



Page 105

> Many different event generators available for HEP/LHC

– Choice depends on process, required precision, …

● E.g. matrix-element generators: MadGraph, Powheg
● E.g. matrix-element + parton-shower generators: Pythia, Herwig

– Important to understand differences and subtleties to not treat them as blackboxes!

Think outside the (black)box!

Katharina Behr
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Think outside the (black)box!

“[…] remember that the programs do not represent a 
dead collection of established truths, but rather one of 
many possible approaches to the problem of multiparticle 
production in high-energy physics, at the frontline of 
current research. Be critical!”

From the manual of the Pythia5 MC generator

Katharina Behr

https://cdsweb.cern.ch/record/2296395/files/pythia.pdf
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> Simulate interactions of (collider) stable particle with detector material

– Geant4, Delphes, ...

Further aspects

Katharina Behr
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> Simulate interactions of (collider) stable particle with detector material

– Geant4, Delphes, …

> Specifically for hadron colliders (LHC, Tevatron, …):

– Underlying Event: simulate interactions of additional partons within same two protons

Further aspects
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> Simulate interactions of (collider) stable particle with detector material

– Geant4, Delphes, …

> Specifically for hadron colliders (LHC, Tevatron, …):

– Underlying Event: simulate interactions of additional partons within same two protons

– Pile-up: simulate interactions of additional protons in the same bunch crossing

> Further reading: 

lecture by M. Seymour and M. Marx [link]

Further aspects

Katharina Behr

https://arxiv.org/abs/1304.6677
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> Simulation not always feasible for estimating background processes

– Instrumental backgrounds (related to detector effects)

● Jets with high EM component faking electrons
● Backgrounds from detector noise
● …

– Processes with large cross-section that would require large MC statistics

● Mostly multijets at the LHC

– Known modeling limitations

● Missing higher-order processes
● …

> Use fully data-driven estimates or data-driven corrections

Estimating background processes from data

Katharina Behr



Page 111

> Assume known signal region (= location in the spectrum)

> Fit background in sidebands (= adjoining parts of the spectrum, signal depleted)

> Extrapolate to signal region

Sidebands

Katharina Behr
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> Same idea as with sidebands but using a modified selection to define a control region

– Orthogonal to signal region, signal depleted

> Must be carefully designed to

– Be signal depleted

– Be enriched in background of interest

– Close enough to SR to avoid biases

– ...

Control Regions

Signal signature: Z(→ll) + ET
miss  + bbar

Katharina Behr
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A final signal region

Invariant mass of top pair

Systematic and statistical 
uncertainties

Variable of interest

Katharina Behr
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> Various different sources:

– Modeling uncertainties, e.g. unknown higher-order corrections

– Experimental uncertainties, e.g. uncertainties on electron energy measurement

> Propagate to final spectrum

> Uncertainties degrade sensitivity to signal

Systematic uncertainties

Katharina Behr
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A final signal region

Invariant mass of top pair

What type of deviation are we 
looking for?

Katharina Behr
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> Most generally put: we search for a significant deviation from the SM prediction

> Different search strategies

– Cut-and-count method

– Bump hunt

– Tail hunt

– ...

> Each comes with its own set of advantages/disadvantages!

What are we looking for?

E
ve

n
t 

co
u

n
t

Expected SM 
Background

Variable of interest

Data

Potential new signal
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> Search for a localised deviation in the distribution of a variable of interest

– Typically: invariant mass

Bump Hunting

E
ve

n
t 

co
u

n
t

Expected SM 
Background

tt invariant mass

Events from 
resonant production

t

tq

q

Z’

mZ’
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> Search for a localised deviation in the distribution of a variable of interest

– Typically: invariant mass

> Most recent successful example:

– Higgs boson discovery (2012, CERN)

Bump Hunting

Katharina Behr
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Tail Hunting

E
ve

n
t 

co
u

n
t

Reso

mZ’tt invariant mass

> Search for a tail enhancement in the distribution of a variable of interest

> Typical examples:

– Resonances beyond reach of the LHC

Katharina Behr
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Tail Hunting

> Search for a tail enhancement in the distribution of a variable of interest

> Typical examples:

– Resonances beyond reach of the LHC

– Non-resonant production of new particles

● E.g. dark matter or dark energy
Non-interacting scalar 
dark energy particles, 
→ missing energy

Recoiling gluon, leading 
to single visible jet

Katharina Behr
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Tail Hunting

> Search for a tail enhancement in the distribution of a variable of interest

> Typical examples:

– Resonances beyond reach of the LHC

– Non-resonant production of new particles

> Advantages:

– Sensitive to processes that cannot be                                                                                              
identified by bump hunts

> Disadvantages:

– Tails of distributions suffer from low statistics

– Often sizeable systematic uncertainties

● E.g. due to missing higher-order calculations

Katharina Behr
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What if new particles are less obvious to spot?

> Bump hunt assumes “signal sitting on top of background”: S + B = |s|2 + |b|2

Katharina Behr
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What if new particles are less obvious to spot?

> Bump hunt assumes “signal sitting on top of background”: S + B = |s|2 + |b|2

> Quantum mechanics: two processes with same initial and same final state will interfere!

–  |s + b|2 = |s|2 + 2 Re(s b) + |b|2 = S + I + B → Interference!!

Katharina Behr
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What if new particles are less obvious to spot?

> Bump hunt assumes “signal sitting on top of background”: S + B = |s|2 + |b|2

> Quantum mechanics: two processes with same initial and same final state will interfere!

–  |s + b|2 = |s|2 + 2 Re(s b) + |b|2 = S + I + B → Interference!!

Two possible interference 
patterns on top of the 
background

Variable of interest

E
ve

n
t 

co
u

n
t
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Beyond Bump Hunts

> Prominent example: decay of a heavy Higgs boson A/H to a top-antitop quark pair

> Need cutting edge methods → on-going research @ DESY

Katharina Behr
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A final signal region

Invariant mass of top pair

Need to quantify agreement 
between data and SM 
prediction

Katharina Behr
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> Two statistical analysis stages in BSM searches:

– Quantify agreement between data and SM prediction (“Any interesting deviation?”)

– Quantify (dis)agreement between data and BSM hypothesis (“limit setting”)

Statistical analysis

Katharina Behr
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> Null hypothesis H0: SM only, no BSM

> p-value: probability that H0 produces deviation at least as extreme as the one observed

> Simple example: cut-and-count

Step 1: quantify agreement with SM prediction

Event count

Expected SM 
Background

Significant 
deviation!

Signal region

Katharina Behr
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> Null hypothesis H0: SM only, no BSM

> p-value: probability that H0 produces deviation at least as extreme as the one observed

> Or quote significance instead:

> where Φ-1 is inverse of cumulative Gaussian

Step 1: quantify agreement with SM prediction

Katharina Behr
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> If excess was found: test agreement with BSM … and open the champagne ;)

> If no excess was found: test degree to which H1 is excluded by data (limit setting)

Step 2: Quantify agreement with BSM hypothesis H1

Expected SM 
Background

Signal region

Signal 
prediction

Katharina Behr
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> Usually, setup is more complicated: many bins, many signal regions

> Construct a likelihood function that quantifies data/MC agreement in all bins

Step 2: Quantify agreement with BSM hypothesis H1

Further reading:
Lecture by G. Cowan [link]

Katharina Behr

https://indico.desy.de/event/29561/attachments/65204/80480/cowan_desy21.pdf
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> CL(s+b) – probability to falsely reject signal because it is too similar to background

> Confidence level

– H1 excluded at 95% CL if CL(s+b) < 0.05

Step 2: Quantify agreement with BSM hypothesis H1

Katharina Behr
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> Problem:

– Danger to falsely reject H1  even if separation between                                                                   
  H1 and H0 is poor, i.e. sensitivity to H1 is low

> Solution:

– CL(s) = CL(s+b)/[1-CL(b)]

> Confidence level

– H1 excluded at 95% CL if CL(s) < 0.05

Step 2: Quantify agreement with BSM hypothesis H1

Katharina Behr



Page 134

> The famous “Brazilian” plot, showing observed and expected exclusion limits with error bands

A final result

Katharina Behr
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> No significant (5σ) deviation from the SM observed so far.

> Results constrain BSM models…

> … and point to uncharted territory!

Where do we stand?

Katharina Behr
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> Anomalous magnetic moment of the muon in analogy to that of the electron

> Loop quantum corrections: g≠2

> Anomalous magnetic moment: a = (g-2)/2

> Sensitive to large range of possible quantum corrections, including possible BSM contributions

+ ?

Katharina Behr

Muon g-2 (1)
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> Storage ring with polarised muons in magnetic field → measure precession frequency

> Measurements at BNL (2004) first revealed tension with SM of 2.6σ significance

> Confirmed by new Fermilab measurement (2021) at 4.2σ combined significance

– More data is being taken and analysed

Katharina Behr

Muon g-2 (2)
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> Gravity not described by SM

– Various approaches to describe gravity with a quantum field theory have failed

– Theory of Everything: SM + General Relativity

– Unification at Planck scale 1019 GeV

● Electroweak force and gravity are of the same order

Katharina Behr

Missing pieces: gravity
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> Various sources of astrophysical evidence for existence of DM

– Galactic rotation curves

– Motion of galactic clusters

– Gravitational lensing

– ...

Katharina Behr

Missing pieces: dark matter
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> No candidates for dark matter (DM) or dark energy (DE)

– DM and DE content determined from CMB as measured by Planck satellite

Katharina Behr

Missing pieces: dark matter and dark energy
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> No candidates for dark matter (DM) or dark energy (DE)

– DM and DE content determined from CMB as measured by Planck satellite

SM describes only 5% of 
matter-energy content of 
the Universe

Katharina Behr

Missing pieces: dark matter and dark energy
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> Many assumptions introduced ad-hoc, without underlying theory motivation

– 26 free parameters, including all fermion masses

– Why three lepton and quark generations?

– Why do the fermion masses differ by at least 12 orders of magnitude?

Katharina Behr

Conceptual issues within the Standard Model
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> Equal amounts of matter and antimatter created in the Big Bang (B=0)

> Observable universe completely dominated by matter (B>0)

> What caused this imbalance?

> Sakharov conditions

1. Baryon number violating processes

2. C and CP violation

3. Processes out of thermal equilibrium

● CP violation observed in the SM
● Kaon and B-meson system
● Not sufficiently large to explain imbalance

● Need additional sources of CP violation!
● E.g. from neutrino sector
● E.g. from extended Higgs sector models

Katharina Behr

Matter-antimatter imbalance
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> Equal amounts of matter and antimatter created in the Big Bang (B=0)

> Observable universe completely dominated by matter (B>0)

> What caused this imbalance?

> Sakharov conditions

1. Baryon number violating processes

2. C and CP violation

3. Processes out of thermal equilibrium

Excellent review of Sakharov conditions 
by D. Perepelitska [link]

Katharina Behr

Matter-antimatter imbalance

http://phys.columbia.edu/~dvp/dvp-sakharov.pdf
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> QCD Lagrangian for massive quarks contains a CP violating term

> Amount of CP violation depends on parameter θ*, which can take values in [0,1]

> Strong CP violation → non-zero neutron electric dipole moment: dN = (5.2 10-16 e cm) θ*

> Measured from Larmor precession of neutron spin in antiparallel and parallel E and M fields

> Measurements constrain dipole moment to |dN| < 10-26 e cm → θ* < 10-10 

> θ* = 0 indicates extreme fine-tuning

Katharina Behr

The strong CP problem (1)
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> Possible solution via the Peccei-Quinn mechanism

> Relate θ* to a new physical field with a global chiral U(1) symmetry

> Field has tilted Mexican hat potential

> Spontaneous breaking of U(1) → pseudo-Goldstone boson: axion

> VEV of axion field leads to θ* = 0

– No fine tuning! 

> Axion also a dark matter candidate (see later).

Credit: U Wuppertal

Katharina Behr

The strong CP problem (2)
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> SM contains an elementary scalar particle (Higgs)

– Vulnerable to quantum loop corrections of arbitrary high scales

> No BSM physics → SM valid up to Planck scale O(1019 GeV)

– Higgs mass should be 16 orders of magnitude larger than the measured 125 GeV

Katharina Behr

The hierarchy problem
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> SM contains an elementary scalar particle (Higgs)

– Vulnerable to quantum loop corrections of arbitrary high scales

> No BSM physics → SM valid up to Planck scale O(1018 GeV)

– Higgs mass should be 16 orders of magnitude larger than the measured 125 GeV

> BSM solutions:

– Supersymmetry: additional loops to cancel divergent loops

– Extra dimensions

– Composite Higgs models

– …
Katharina Behr

The hierarchy problem
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