Beyond the Standard Model

Hamburg International Summer School 14 – 25 July 2025

Katharina Behr

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Outline

> Part 1:

- What motivates us to look beyond the Standard Model?
- Experimental techniques

> Part 2:

- Example: dark matter
 - WIMP searches at the LHC
 - Axion detectors at DESY
- Outlook: the future of the LHC and beyond

Outline

> Part 1:

- What motivates us to look beyond the Standard Model?
- Experimental techniques
- > Part 2:
 - Example: dark matter
 - WIMP searches at the LHC
 - Axion detectors at DESY
 - Outlook: the future of the LHC and beyond

The Standard Model in 2025

Standard Model of Elementary Particles

A success story: particle predictions (1)

- > Example: Top quark
 - Predicted in 1973 to explain observed CP violations in kaon decays
 - Observed at Tevatron (Fermilab, U.S.) in 1995
 - First mass estimate: 176 ± 13 GeV
 - Predicted before discovery to be > 160 GeV
 - Top quark mass now known at precision of < 1 GeV

 $- M_{TOP} = 172.76 \pm 0.3 \text{ GeV} (PDG, 2019)$

A success story: particle predictions (2)

> Example: Higgs boson

- Predicted in 1964 by Brout, Englert, Higgs
- Discovered in July 2012 at LHC (CERN)
- Mass of 125 GeV
 - Within range previously predicted by SM

A success story: precision tests (1)

- > Example: magnetic moment of the electron
 - Intrinsic quantity arising from electron spin

$$\vec{\mu} = g \, \frac{q}{2m} \, \vec{S}$$

- Depends on g-factor
 - Classic quantum mechanics for a point-like Dirac particle: g = 2
 - Quantum field theory \rightarrow loop quantum corrections: $g \neq 2$

A success story: precision tests (1)

- > Example: magnetic moment of the electron
 - Measurement using a single electron in a Penning trap
 - Comparison of cyclotron and precession frequencies

A success story: precision tests (1)

- > Example: magnetic moment of the electron
 - Results from latest Harvard measurement [Hanneke et al, PRL 100 (2008) 120801]
 - Using a one-electron quantum cyclotron

 $g/2 = 1.001 \ 159 \ 652 \ 180 \ 73 \ (28)$ [0.28 ppt] (measured) $g(\alpha)/2 = 1.001 \ 159 \ 652 \ 177 \ 60 \ (520)$ [5.2 ppt] (predicted)

- Measured value agrees with SM prediction at precision better than 1 part per billion
- Note that calculated value depends on α , which is taken from other measurements
 - Can also use g/2 measurement as input to extract α

A success story: precision tests (2)

- > Production cross-sections of common and rare processes
 - Measure how often a certain reaction occurs in the LHC's proton-proton collisions
 - Compare to the rates calculated via the SM

DESY.

r D

Why look beyond the SM?

Missing pieces: gravity

- > Gravity not described by SM
 - Various approaches to describe gravity with a quantum field theory have failed
 - Theory of Everything: SM + General Relativity
 - Unification at Planck scale 10¹⁹ GeV
 - Electroweak force and gravity are of the same order

Missing pieces: dark matter

- > Various sources of astrophysical evidence for existence of DM
 - Galactic rotation curves
 - Motion of galactic clusters
 - Gravitational lensing

Missing pieces: dark matter & dark energy

- > No candidates for dark matter (DM) or dark energy (DE)
 - DM and DE content determined from CMB as measured by Planck satellite

Missing pieces: dark matter & dark energy

- > No candidates for dark matter (DM) or dark energy (DE)
 - DM and DE content determined from CMB as measured by Planck satellite

Conceptual issues within the SM

- > Many assumptions introduced ad-hoc, without underlying theory motivation
 - 26 free parameters, including all fermion masses
 - Why three lepton and quark generations?
 - Why do the fermion masses differ by at least 12 orders of magnitude?

The strong CP problem (1)

- > QCD Lagrangian for massive quarks contains a CP violating term
- > Amount of CP violation depends on parameter θ^* , which can take values in [0,1]

- > Strong CP violation \rightarrow non-zero neutron electric dipole moment: $d_N = (5.2 \ 10^{-16} e \ cm) \theta^*$
- > Measured from Larmor precession of neutron spin in antiparallel and parallel E and M fields
- > Measurements constrain dipole moment to $|d_N| < 10^{-26} e \text{ cm} \rightarrow \theta^* < 10^{-10}$

> $\theta^* = 0$ indicates extreme fine-tuning

The strong CP problem (2)

- Possible solution via the Peccei-Quinn mechanism
- > Relate θ^* to a new physical field with a global chiral U(1) symmetry
- > Field has tilted Mexican hat potential
- > Spontaneous breaking of $U(1) \rightarrow$ pseudo-Goldstone boson: axion
- > VEV of axion field leads to $\theta^* = 0$
 - No fine tuning!

> Axion also a dark matter candidate (see later).

The Hierarchy Problem

- > SM contains an elementary scalar particle (Higgs)
 - Vulnerable to quantum loop corrections of arbitrary high scales

- No BSM physics \rightarrow SM valid up to Planck scale O(10¹⁹ GeV)
 - Higgs mass should be 16 orders of magnitude larger than the measured 125 GeV
- > BSM solutions:

. . .

- Supersymmetry: additional loops to cancel divergent loops
- Extra dimensions
- Composite Higgs models

The Hierarchy Problem

- > SM contains an elementary scalar particle (Higgs)
 - Vulnerable to quantum loop corrections of arbitrary high scales

- > No BSM physics \rightarrow SM valid up to Planck scale O(10¹⁸ GeV)
 - Higgs mass should be 16 orders of magnitude larger than the measured 125 GeV
- > BSM solutions:

. . .

- Supersymmetry: additional loops to cancel divergent loops
- Extra dimensions
- Composite Higgs models

Matter-antimatter imbalance

- Equal amounts of matter and antimatter created in the Big Bang (B=0)
- > Observable universe completely dominated by matter (B>0)
- > What caused this imbalance?

Sakharov conditions

- 1. Baryon number violating processes
- 2. C and CP violation
- 3. Processes out of thermal equilibrium

Excellent review of Sakharov conditions by D. Perepelitska [link]

Matter-antimatter imbalance

- > Equal amounts of matter and antimatter created in the Big Bang (B=0)
- > Observable universe completely dominated by matter (B>0)
- > What caused this imbalance?

Sakharov conditions

- 1. Baryon number violating processes
- 2. C and CP violation
- 3. Processes out of thermal equilibrium

• CP violation observed in the SM

- Kaon and B-meson system
- Not sufficiently large to explain imbalance
- Need additional sources of CP violation!
 - E.g. from neutrino sector
 - E.g. from extended Higgs sector models

Muon g-2 (1)

> Anomalous magnetic moment of the muon in analogy to that of the electron

 $\vec{\mu} = g \, \frac{q}{2m} \, \vec{S}$

- > Loop quantum corrections: g≠2
- > Anomalous magnetic moment: a = (g-2)/2

> Sensitive to large range of possible quantum corrections, including possible BSM contributions

Muon g-2 (2)

- Storage ring with polarised muons in magnetic field \rightarrow measure precession frequency
- > Measurements at BNL (2004) first revealed tension with SM of 2.6 σ significance
- > Subsequent measurements at Fermilab (2021) yielded combined significance of 4.2σ

Page 25

Muon g-2 (3)

- > Storage ring with polarised muons in magnetic field \rightarrow measure precession frequency
- > Measurements at BNL (2004) first revealed tension with SM of 2.6 σ significance
- > Subsequent measurements at Fermilab (2021) yielded combined significance of 4.2σ
- > Most precise measurement of muon g-2 to date: 127 parts-per-billion precision!

Credit: Muon g-2 collaboration

Muon g-2 (4)

> Meanwhile on the theory front: new SM calculations based on Lattice QCD

Credit: A. Boccaletti et al., arXiv:2407.10913, 2024

Flavour anomalies

- > Tension with SM predictions in various precision measurements of B-meson decays
- Possible violation of Lepton Flavour Universality (LFU)
 - LFU: SM interactions same for all lepton flavours
 - Only differences due to different lepton masses
- In general two types of processes:
 - − b \rightarrow s |+|- (neutral currents): µ vs. e
 - − b → c lv (charged currents): τ vs. μ/e
- > In different experiments since 2013:
 - BarBar, Belle, LHCb

Flavour anomalies

- > Tension with SM predictions in various precision measurements of B-meson decays
- Possible violation of Lepton Flavour Universality (LFU)
 - LFU: SM interactions same for all lepton flavours
 - Only differences due to different lepton masses
- In general two types of processes:
 - − b \rightarrow s |+|- (neutral currents): µ vs. e
 - − b → c lv (charged currents): τ vs. μ/e
- > In different experiments since 2013:
 - BarBar, Belle, LHCb

Flavour anomalies: R_{D*}

- > SM prediction: $R_{D^*} = 1$
- > Measurement deviates by > 3σ

$$R(D^*) = rac{\mathcal{B}(B o D^* \, au^- \, ar{
u}_ au)}{\mathcal{B}(B o D^* \, \ell^- \, ar{
u}_\ell)} \quad ext{where} \; \ell = e ext{ or } \mu$$

- > Anomalies could be due to presence of new particles (leptoquarks, charged Higgs bosons, ...)
 - Heavy charged Higgs bosons couple preferentially to heavier leptons

Many questions. Many possible answers!

Open questions in the SM:

Beyond SM theories:

. . .

Many questions. Many possible answers!

Open questions in the SM:

Beyond SM theories:

. . .

Experimental Techniques

Basic recipe for collider searches

- > Many ingredients needed
- > Simple recipe common to most searches
- > Refined by each individual analysis team

Ingredient 1: a particle collider

- > LHC a discovery machine!
 - Highest centre-of-mass energies reached in a lab to date (14 TeV)
 - Hadron collider: different partonic initial states and effective centre-of-mass energies

Ingredient 2: detectors

- > ATLAS, CMS two general-purpose detectors capable of capturing Higgs-boson decay products
- > LHCb, ALICE, ... specialised detectors for heavy-flavour and heavy-ion physics, respectively
 - Also capable of searching for certain types of new phenomena

ATLAS

CMS
Ingredient 3: data

- > Collect detector data during LHC periods of operation (runs)
- > Focus here on proton-proton collisions
- > Three runs at different centre of mass energies

Ingredient 3: data and simulation

> Detector data

- Real data taken with a detector
- Different datasets for different LHC operation periods
- Mix of various different processes

> MC simulation

- Generate well-defined process
 - SM or BSM expectation
 - Typically just one process per sample
- All "truth" information accessible
- Need to be careful to simulate realistic detector conditions

Ingredient 4: collaborations

- > Large international collaborations for each detector
- > Hundreds to thousands of scientists, engineers, technicians who
 - Operate the detector
 - Reconstruct and calibrate the detector data
 - Provide and operate computing and simulation tools
 - Perform the data analysis

Basic recipe: search concept

> Search for a specific signal "S" in a data sample composed of a potential signal and background "B"

SM ttbar production

Irreducible background

> Typically S << B

Signal Heavy Higgs boson decaying to ttbar

How to find a needle in a haystack?

- > Typically S << B
- > Isolate small signal from huge dataset

Signal (a.k.a. the needle)

T.G. McCarthy

How to find a needle in a haystack?

>

What type of signal are we looking for?

> Most generally put: we search for a significant deviation from the SM prediction

- > Different search strategies
 - Cut-and-count method
 - Bump hunt
 - Tail hunt

. . .

Each comes with its own set of advantages/disadvantages!

Bump Hunting

- > Search for a localised deviation in the distribution of a variable of interest
 - Typically: invariant mass

Bump Hunting

- > Search for a localised deviation in the distribution of a variable of interest
 - Typically: invariant mass
- > Most recent successful example:
 - Higgs boson discovery (2012, CERN)

DESY.

- > Search for a tail enhancement in the distribution of a variable of interest
- > Typical examples:
 - Resonances beyond reach of the LHC

- > Search for a tail enhancement in the distribution of a variable of interest
- > Typical examples:
 - Resonances beyond reach of the LHC

tt invariant mass

- Search for a tail enhancement in the distribution of a variable of interest >
- Typical examples: >
 - Resonances beyond reach of the LHC
 - Non-resonant production of new particles
 - E.g. dark matter or dark energy

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Signal Region

 10^{-7}

10⁶

Data

Standard Model w. unc.

VBF Z(\rightarrow II / $\nu\nu$) + jets

 $Z(\rightarrow \nu\nu)$ + jets

- > Search for a tail enhancement in the distribution of a variable of interest
- > Typical examples:
 - Resonances beyond reach of the LHC
 - Non-resonant production of new particles
- > Advantages:
 - Sensitive to processes that cannot be by bump hunts
- > **Disadvantages**:
 - Tails of distributions suffer from low statistics
 - Often sizeable systematic uncertainties
 - E.g. due to missing higher-order calculations

What if new particles are less obvious to spot?

> Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$

What if new particles are less obvious to spot?

- > Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$
- > Quantum mechanics: two processes with same initial and same final state will interfere!
 - $|s + b|^2 = |s|^2 + 2 \operatorname{Re}(s b) + |b|^2 = S + I + B$ → Interference!!

What if new particles are less obvious to spot?

- > Bump hunt assumes "signal sitting on top of background": $S + B = |s|^2 + |b|^2$
- > Quantum mechanics: two processes with same initial and same final state will interfere!
 - $|s + b|^2 = |s|^2 + 2 \operatorname{Re}(s b) + |b|^2 = S + I + B$ → Interference!!

Interference searches

- > Prominent example: decay of a heavy Higgs boson A/H to a top-antitop quark pair
- > Cutting-edge experimental techniques needed: statistical treatment, high-resolution reconstruction, ...

Back to our haystack...

Recipe step 1: collect the data

- > LHC collision rate: 40 MHz of collision events
- > Typical event size (raw detector data): 1.6 MB
- > Petabytes of data, most of it not very interesting (known physics, low-energy collisions)

DESY.

Recipe step 1: collect the data with triggers

- > Triggers = event filters based on fast pattern recognition algorithms
- > Both hardware (L1) and software (HLT) based algorithms
- > HLT algorithms a slightly simplified version of full offline reconstruction algorithms
- > Both standard triggers (e.g. single-electron triggers) and triggers optimised for unusual signature.
- > Careful optimisation of trigger algorithms crucial: If you don't trigger on a signature, its events are lost!

Recipe step 2: reconstruct and identify the particles

Recipe step 2: reconstruct and identify the particles

> Example: top-antitop quark production with one hadronic, one leptonic top-quark decay

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

3-jet mass (GeV/c²)

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Apply selection criteria (cuts) to reduce background
- > Signal-enriched region (signal region)
- > Additional cuts based on differences in kinematic distributions

- > Can refine signal regions using machine-learning algorithms
 - Exploit small differences in various kinematic variables
 - Exploit correlations between variables

12

10

a. u.

Ŏ.0

0.2

0.4

ANN Output

0.6

1.0

0.8

A final signal region

Recipe step 4: estimate backgrounds

- > Monte Carlo simulation is one option for well-known (=calculated) processes
 - Check validity in signal-depleted control regions and derive corrections if needed
- > Data-driven estimates needed in some cases
 - Instrumental backgrounds (related to detector effects)
 - Jets with high EM component faking electrons
 - Backgrounds from detector noise
 - ...

. . .

- Processes with large cross-section that would require large MC statistics
 - Mostly multijets at the LHC
- Known modeling limitations
 - Missing higher-order processes

Recipe step 4: sidebands

- > Assume known signal region (= location in the spectrum)
- > Fit background in sidebands (= adjoining parts of the spectrum, signal depleted)
- > Extrapolate to signal region

Recipe step 4: control regions

- > Same idea as with sidebands but using a modified selection to define a control region
 - Orthogonal to signal region, signal depleted
- > Must be carefully designed to
 - Be signal depleted

. . .

- Be enriched in background of interest
- Close enough to SR to avoid biases

Recipe step 5: estimate systematic uncertainties

- > Various different sources:
 - Modeling uncertainties, e.g. unknown higher-order corrections
 - Experimental uncertainties, e.g. uncertainties on electron energy measurement
- > Propagate to final spectrum
- > Uncertainties degrade sensitivity to signal

Recipe step 6: unblind

- > Signal region(s) blinded until analysis strategy finalised
 - That is: not allowed to look at the data in the signal regions
 - Optimise strategy based on MC simulation and control region data only

Recipe step 6: unblind

- > Signal region(s) blinded until analysis strategy finalised
 - That is: not allowed to look at the data in the signal regions
 - Optimise strategy based on MC simulation and control region data only
- > Unblind once strategy is solid and "frozen"

A final signal region

Recipe step 7: statistical data analysis

- > Two consecutive statistical tests in BSM searches:
 - Quantify agreement between data and SM prediction ("Any interesting deviation?")
 - Quantify (dis)agreement between data and BSM hypothesis ("limit setting")
- > Based on profile likelihood fit of SM prediction to data (prediction can vary within uncertainties)

Quantify agreement with SM prediction

- > Null hypothesis H₀: SM only, no BSM
- > **p-value**: probability that H₀ produces deviation at least as extreme as the one observed
- Simple example: cut-and-count

Quantify agreement with SM prediction

- > Null hypothesis H₀: SM only, no BSM
- > **p-value**: probability that H₀ produces deviation at least as extreme as the one observed
- > Or quote **significance** instead:

 $Z = \Phi^{-1}(1-p)$

> where Φ^{-1} is inverse of cumulative Gaussian

Quantify agreement with BSM hypothesis H₁

- > If excess was found: test agreement with BSM ... and open the champagne ;)
- > If no excess was found: test degree to which H₁ is excluded by data (limit setting)

Quantify agreement with BSM hypothesis H₁

- > Usually, setup is more complicated: many bins, many signal regions
- Construct a likelihood function that quantifies data/MC agreement in all bins

$$L(D|\mu, \boldsymbol{\theta}) = \underbrace{\prod_{j=1}^{M} \prod_{i=1}^{N} \operatorname{Pois}(n_{i,j}|\mu, \boldsymbol{\theta})}_{\operatorname{Poisson terms}} \cdot \underbrace{\prod_{NP} f(\boldsymbol{\theta}^{(NP)})}_{\operatorname{Constraint terms}}$$

Further reading: Lecture by G. Cowan [link]

Quantify agreement with BSM hypothesis H₁

- > CL(s+b) probability to falsely reject signal because it is too similar to background
- > Confidence level
 - H₁ excluded at 95% CL if CL(s+b) < 0.05</p>

- > Problem:
 - Danger to falsely reject H_1 even if separation between H_1 and H_0 is poor, i.e. sensitivity to H_1 is low
- > Solution:
 - CL(s) = CL(s+b)/[1-CL(b)]
- > Confidence level
 - H₁ excluded at 95% CL if CL(s) < 0.05

A final result

> The famous "Brazilian" plot, showing observed and expected exclusion limits with error bands

Search recipe summary

Ingredients

steps

Recipe

- > Pick and study a signal of interest (MC simulation)
- > Select subset of events enriched in signal (signal region)
- > Estimate backgrounds and systematic uncertainties
 - Often via control regions enriched in background
- > Test agreement between SM prediction and data

Discovery!Null resultCharacterise signal ...
and open the champagneDerive constraints on
BSM models

BONUS SLIDES

Event simulation

- > Simulate possible signals based on theoretical models
 - Optimise sensitivity of searches
- > Simulate background processes
 - Compare predictions to data and look for deviations
 - Some background processes can be simulated very accurately...
 - ... others not (see data-driven estimates later)
- > Estimate systematic uncertainties
 - Create different background predictions within experimental uncertainties
 - E.g. top mass known with ±1 GeV uncertainty
 - → Simulate top quark pair production for m_{top} (central) and m_{top} (central)±1 GeV

Simulation step by step

> Hard processes (large momentum transfers): perturbative QCD

- hard scattering
- (QED) initial/final state radiation

Simulation step by step

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting

Simulation step by step

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Think outside the (black)box!

- > Many different event generators available for HEP/LHC
 - Choice depends on process, required precision, ...
 - E.g. matrix-element generators: MadGraph, Powheg
 - E.g. matrix-element + parton-shower generators: Pythia, Herwig
 - Important to understand differences and subtleties to not treat them as blackboxes!

"[...] remember that the programs **do not represent a dead collection of established truths**, but rather one of many possible approaches to the problem of multiparticle production in high-energy physics, at the frontline of current research. **Be critical!**"

From the manual of the Pythia5 MC generator

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...
- > Specifically for hadron colliders (LHC, Tevatron, ...):
 - **Underlying Event**: simulate interactions of additional partons within same two protons
 - **Pile-up**: simulate interactions of additional protons in the same bunch crossing

> Further reading:

lecture by M. Seymour and M. Marx [link]

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...

Further aspects

- > Simulate interactions of (collider) stable particle with detector material
 - Geant4, Delphes, ...
- > Specifically for hadron colliders (LHC, Tevatron, ...):
 - **Underlying Event**: simulate interactions of additional partons within same two protons

Cut-and-count method

- > Select (**cut**) events that you expect to be consistent with signal (signal region)
- > **Count** data events in signal region and compare with number of expected SM events
- > Calculate significance of deviation from SM prediction (accounting for uncertainties)

Cut-and-count method

- > Select (**cut**) events that you expect to be consistent with signal (signal region)
- > **Count** data events in signal region and compare with number of expected SM events
- > Calculate significance of deviation from SM prediction (accounting for uncertainties)

- > Advantage: suited for low-stat regions, model agnostic
- **Disadvantage**: single bin \rightarrow vulnerable to fluctuations \rightarrow less sensitive

