To the Higgs and beyond

Hamburg International Summer School 14 – 25 July 2025

Katharina Behr

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery

> Part 2: What is the fingerprint of the vacuum?

- Unravelling the Higgs potential
- Higgs boson pair production
- Extra: Triple Higgs production
- > Part 3: Is there even more to the vacuum?
 - Extended Higgs sectors
 - Extra: news from the ttbar threshold
 - Outlook: the future of the LHC and beyond

h

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery
- > Part 2: What is the fingerprint of the vacuum?
 - Unravelling the Higgs potential
 - Higgs boson pair production
 - Extra: Triple Higgs production
 - Outlook: the future of the LHC and beyond
- > Part 3: Is there even more to the vacuum?
 - Extended Higgs sectors
 - Extra: news from the ttbar threshold

h

h

A key piece of missing information

- > Full shape of the Higgs potential
- > Current measurements in single Higgs bosons only probe potential around minimum

A key piece of missing information

- > Full shape of the Higgs potential
- > Current measurements in single Higgs bosons only probe potential around minimum
- SM prediction: Mexican hat potential

A key piece of missing information

- > BSM: many different shapes possible
- > E.g. extra scalar singlet

$$V(h,H) = V_{
m SM}(h) + rac{1}{2}m_{H}^{2}H^{2} + rac{1}{2}\mu_{hH}hH + rac{\lambda_{hH}}{2}h^{2}H^{2} + rac{\lambda_{3H}}{3!}H^{3} + rac{\lambda_{4H}}{4!}H^{4}$$

- Smoking-gun hints of extended Higgs sectors:
 - Deviation of self-coupling from SM value
 → This lecture!
 - Presence of extra Higgs bosons
 - → Tomorrow's lecture

Why care about the full potential?

> Higgs potential may provide answers to many key open questions in particle physics

Higgs pair production at the LHC

- > Challenge: di-Higgs cross-section around 1800 times smaller than single Higgs cross-section
- > ggF production (90.2%): leading sensitivity to trilinear coupling λ_{hhh}

Higgs pair production at the LHC

- > Challenge: di-Higgs cross-section around 1800 times smaller than single Higgs cross-section
- > ggF production (90.2%): leading sensitivity to trilinear coupling λ_{hhh}

Softer spectrum away from SM value

 $\kappa_{\lambda} = \lambda_3 / \lambda^{SM}_{hhh}$

Higgs pair production at the LHC

- Challenge: di-Higgs cross-section around 1800 times smaller than single Higgs cross-section >
- ggF production (90.2%): leading sensitivity to trilinear coupling λ_{hhh} >
- > VBF production (5%): unique access to di-Higgs-di-vector-boson coupling λ_{hhvv}

 $K_{\lambda} = \lambda_3 / \lambda^{SM}_{hhh}$

How to find a needle in a haystack?

Signal (a.k.a. the needle)

T.G. McCarthy

How to find a needle in a haystack?

Page 12

How to find a needle in a haystack?

- > Define criteria that characterise chosen signal in detector
- > Apply selection criteria to reduce background
- > Signal-enriched region (signal region)

- > Pick and study a signal of interest (MC simulation)
- > Select subset of events enriched in signal (signal region)
- > Estimate backgrounds and systematic uncertainties
 - Often via control regions enriched in background
- > Test agreement between SM prediction and data (likelihood fits)

Signatures of di-Higgs production

	bb	ww	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Signatures of di-Higgs production

- > Three most sensitive channels:
 - *bbbb*: largest BR (34%), large multi-*b*-jet background

	bb		ww	ττ	ZZ	ΥY
	bb	34%				
-	ww	25%	4.6%			
-	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
-	YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Event topologies in the *bbbb* **channel**

- > Three possible topologies depending on Lorentz boost of the two Higgs bosons
- > Identification of heavy flavour crucial:
 - b-tagging for resolved decays
 - $h \rightarrow bb$ tagging for merged decays

b-tagging

- > Identification of jets initiated by *b*-quarks based on properties of resulting *B*-hadron
 - Secondary decay vertex
 - Significant decay length of O(mm cm)
 - Tracks not pointing back to primary vertex \rightarrow large impact parameter d₀

b-tagging (Run 2)

> Combine all information in high-level deep neural net discriminator

Higgs tagging (Run 2)

- Large calorimeter jet with fixed radius parameter R=1.0
- > Identify small-radius subjets and check if they are *b*-tagged using standard *b*-tagging algorithm
- > DNN classifier combining the following inputs:
 - DL1r scores of 2-3 sub-jets
 - Large-*R* jet kinematics

Next-generation taggers (Run 3) – transformers!

- > Inputs: low-level objects (tracks, particle-flow objects)
- > Significant performance improvements for analyses using *b* and $h \rightarrow bb$ jets
 - x 2 better top and multijet rejection for 70% signal efficiency
- > Need accurate tracks reconstruction!

Analysis strategy for the bbbb channel

- > Focus on resolved topologies here: $\geq 4 b$ -jets (signal region)
- > Combinatorial problem: assign *b*-jets to the two Higgs decays
 - Different possible approaches, based on m_{bb} or $\Delta R(b,b)$
 - Focus on four leading *b*-jets \rightarrow three possible combinations
 - Choose configuration where Higgs candidate with the higher p_T has smallest $\Delta R(b,b)$
- > Reconstruct m_{hh}

Background processes

- Difficult to model in simulation due to relevance of detector effects
- Estimated using data in signal-depleted control regions

Extra: the hhVV coupling

- > Focus on production via vector-boson fusion
- Select events with two forward jets and two merged Higgs boson decays
- > Topologies with boosted Higgs boson particularly sensitive to non-SM values of k_{2V}

H

Signatures of di-Higgs production

- > Three most sensitive channels:
 - *bbbb*: largest BR (34%), large multi-*b*-jet background
 - *bbπ*: medium BR (7.3%), good signal purity

		bb	ww	ττ	ZZ	ΥY
\searrow	bb	34%				
	ww	25%	4.6%			
	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Signature of the bbtt channel

- > τ-leptons decay before interacting with the detector
- > Leptonic decay: $\tau_{lep} \rightarrow e/\mu + 2\nu$
- > Hadronic decays:
 - $\tau_{had} \rightarrow 3\pi^{\pm} + X + \nu$ (3-prong)
 - $\tau_{had} \rightarrow \pi^{\pm} + X + \nu$ (1-prong)
- > τ-taggers to identify hadronic τ decays
 - Run-2: BDTs
 - Run-3: transformers (similar to *b*-taggers)
- > Two orthogonal channels:
 - LepHad: τ_{lep} τ_{had}
 - HadHad: τ_{had} τ_{had}

Complex analysis strategy for the bbtt channel

> Different triggers, various Boosted Decision Trees (BDTs) to categories events and enhance signal

Katharina Behr

Page 27

Signatures of di-Higgs production

- > Three most sensitive channels:
 - *bbbb*: largest BR (34%), large multi-*b*-jet background
 - $bb\pi$: medium BR (7.3%), good signal purity
 - bbyy: clean channel, but low BR (0.26%).

		bb	ww	ττ	ZZ	ΥY
	bb	34%				
	ww	25%	4.6%			
	ττ	7.3%	2.7%	0.39%		
	zz	3.1%	1.1%	0.33%	0.069%	
	ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Signature of the bbyy channel

- > Photons can be efficiently and precisely with the electromagnetic calorimeters
- > Require events with two photons and at least two b-tagged jets
- > Straightforward reconstruction of two Higgs candidates

Analysis strategy of the bbyy channel

> Main backgrounds from real photons produced in association with jets \rightarrow taken from simulation

>

Analysis strategy of the bbyy channel

- > Multivariate methods to improve suppress background processes
- > Focus on on Higgs decay to photons much better mass resolution compared to decay to bb
- > Check if there is an excess compared to the background which now includes single-Higgs production!

Putting all results together

- > No di-Higgs signal observed yet
- Instead set upper limits on production cross-section
- Or more precisely, on the signal strength: µ_{HH} = measured cross-section / expected cross-section
- > How "far away" are we from probing the SM?

> Current best constraints on Higgs pair production

 μ_{hh} < 2.9 (2.4 exp.)

^{95%} CL upper limit on *HH* signal strength μ_{HH}

Page 33

Putting all results together

> Significant improvement in expected sensitivity on κ_{λ}

Observed: $\kappa_{\lambda} \in [-1.2, 7.2]$ Expected: $\kappa_{\lambda} \in [-1.6, 7.2]$

Putting all results together

> Significant improvement in expected sensitivity on κ_{λ}

Observed: $\kappa_{\lambda} \in [-1.2, 7.2]$ Expected: $\kappa_{\lambda} \in [-1.6, 7.2]$

Observed: $\kappa_{2V} \in [-0.6, 1.5]$ Expected: $\kappa_{2V} \in [-0.4, 1.6]$

Dominated by boosted VBF *bbbb* (boosted *bbbb* signatures powerful at high m_{hh})

Resonant Higgs pair production

- > BSM theories predict extra heavy states that can decay into a pair of Higgs bosons: $pp \rightarrow X \rightarrow hh$
 - More details tomorrow
- > Search for local "bump" in hh invariant mass spectrum (similar to 2012 Higgs discovery)

Resonant Higgs pair production

- > BSM theories predict extra heavy states that can decay into a pair of Higgs bosons: $pp \rightarrow X \rightarrow hh$
 - More details tomorrow
- > Search for local "bump" in hh invariant mass spectrum (similar to 2012 Higgs discovery)
- bbyy: clean channel, most competitive in low m_x region where hadronic backgrounds are large
- > bbbb: dominates in high-mass region where sensitivity is limited by signal statistics
- > $bb\tau\tau$: dominant in medium region

Aside: Interference

- Current resonant $X \rightarrow hh$ searches do not consider interference with non-resonant production (or higher-order effects)
- > Reduced sensitivity for some benchmarks that may be falsely excluded by resonant searches

K. Rachenko, G. Weiglein et al. arXiv:2403.14776

Not twins ... but triplets!

- > Recent effort to search for triple Higgs production at the LHC
- > Most direct access to quartic Higgs coupling with modifier κ_4
- > Process ~400 times rare than Higgs pair production!
 - Expect around 10 events for *hhh* production in full LHC Run-2 dataset (across all decay modes)

Complementarity between *hh* **and** *hhh* **searches**

> Searches for Higgs triplets expected to provide better constraints on κ_4

> Current best constraints from theoretical considerations (unitarity)

P. Stylianou, G. Weiglein [Eur.Phys.J.C 84 (2024) 4, 366]

Why do we care?

- > Constraints on κ₄ seem loose by comparison
- > Little explored probe of BSM physics
 - BSM effects could affect κ_4 much more than κ_3
 - Resonant enhancement in extended Higgs sectors

$$(\kappa_3 - 1) = \frac{C_6 v^2}{\lambda \Lambda^2},$$

$$(\kappa_4 - 1) = \frac{6C_6 v^2}{\lambda \Lambda^2} + \frac{4C_8 v^4}{\lambda \Lambda^4}$$

$$\simeq 6(\kappa_3 - 1) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

First search for triple Higgs production

- > First experimental constraints on κ_4 , first constraints beyond unitarity constraints!
- > Final states with six b-quarks (largest branching ratio)
- > Machine-learning techniques crucial to suppress large hadronic background
- Sensitivity limited by available data statistics

Last update: November 24

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

High-Luminosity LHC (2030 - 2041)

- > Final dataset goal: 3000 fb⁻¹
- Compared to >300 fb⁻¹ for Run 2+3

Challenges

> Significant increase in number of interactions per bunch crossing and particle flux

New ATLAS Inner Tracker

25 interactions (Run 1)

Challenges

> Significant increase in number of interactions per bunch crossing and particle flux

New ATLAS Inner Tracker

200 interactions

Major LHC detector upgrades

- > For example brand-new all-silicon tracking detector for ATLAS (Inner Tracker, ITk)
- > Up to 4 times higher granularity in innermost pixel layers

Partially constructed at DESY!

Major improvements in track reconstruction

> Example: reconstructing tracks in cores of high- p_T jets (dense environments)

Current detector

Major improvements in track reconstruction

- > Example: reconstructing tracks in cores of high-p_T jets (dense environments)
- > Tracking efficiency significantly improved in jet cores \rightarrow better inputs for *b*-tagging

Algorithmic improvements for the HL-LHC

- > Improvements in *b*-tagging crucial for (di-)Higgs analyses
 - Better inputs due to more efficient and accurate tracking and vertexing
 - More performant algorithms (e.g. transformers)

Discovery potential for Higgs pair production at HL-LHC

- > Example: projection in $bb\tau\tau$ channel
- > Largest leverage: experimental improvements
 - Especially *b*-tagging performance
 - Reduction of systematic uncertainties

Baseline: halve theory uncertainties, reduce

selected experimental uncertainties with lumi

Discovery potential for Higgs pair production at HL-LHC

- > Expect to see evidence ($\geq 3\sigma$) in *bbtt* alone before end of HL-LHC
- > Similar projections currently under way for European Strategy for Particle Physics Update
- > Good prospects for discovery by combining several ch
- Further experimental improvements can further boost sensitivity!

Future Collider Plans

- > Higgs factories for precision measurements
- > BSM searches also possible

International Linear Collider

Future Circular Collider

Linear vs circular – it depends on the energy!

- > Circular colliders more competitive at lower collision energies (higher instantaneous luminosity)
- > Linear colliders more competitive at higher collision energies (no losses from synchrotron radiation)

Linear vs circular – it depends on the energy!

> Direct access to trilinear coupling only for \sqrt{s} > 400 GeV \rightarrow linear collider!

Katharina Behr

Linear vs circular – it depends on the energy!

Indirect access via single-Higgs production at lower energies (model dependence!)

Katharina Behr

Trilinear coupling at the ILC

- > ILC (0.5 TeV): ~20% precision achievable on λ_3
- > ILC (1 TeV): ~10% precision (adding WW production)
- > CLIC (3 TeV): ~ 8% precision

Summary: Part 2

>

>

>

>

>

BONUS SLIDES

- > Focus on resolved topologies here: \geq 4 jets, \geq 4 *b*-jets (signal region)
- > Combinatorial problem: assign *b*-jets to the two Higgs decays
 - Focus on four leading *b*-jets \rightarrow three possible combinations
 - Choose configuration where Higgs candidate with the higher p_T has smallest $\Delta R(b,b)$
- Reconstruct m_{hh}
- > Likelihood fit of predicted m_{hh} distribution to that in data
 - Prediction allowed to float within uncertainties

- > Signal region: both Higgs candidates' masses close to 125 GeV
- Control regions used to estimate background from multi-jet production from data

- > Focus on resolved topologies here: \geq 4 jets, \geq 4 *b*-jets (signal region)
- > Combinatorial problem: assign *b*-jets to the two Higgs decays
 - Focus on four leading *b*-jets \rightarrow three possible combinations
 - Choose configuration where Higgs candidate with the higher p_T has smallest $\Delta R(b,b)$
- Reconstruct m_{hh}
- > Likelihood fit of predicted m_{hh} distribution to that in data
 - Prediction allowed to float within uncertainties

- > Focus on resolved topologies here: \geq 4 jets, \geq 4 *b*-jets (signal region)
- > Combinatorial problem: assign *b*-jets to the two Higgs decays
 - Focus on four leading *b*-jets \rightarrow three possible combinations
 - Choose configuration where Higgs candidate with the higher p_T has smallest $\Delta R(b,b)$
- > Reconstruct m_{hh}
- > Likelihood fit of predicted m_{hh} distribution to that in data
 - Prediction allowed to float within uncertainties

Triple Higgs 6b search

- > Use DNNs to discriminate between signal and background
- > Distribution of DNN score as discriminating variable
- > High-score region:
 - Signal enriched
 - Used to define signal region
- > Low-score region:
 - Signal depleted
 - Used to improve background estimate in signal region

Triple Higgs 6b search

- > Use DNNs to discriminate between signal and background
- > Separate DNNs for non-resonant (varying κ_3 and κ_4) and resonant (BSM) production
- > Trained on high-level variables describing the triple Higgs system

Data-driven background estimate

- > Key assumption 1: background kinematics do not change significantly with *b*-jet multiplicity
 - \rightarrow Background **shape** in signal region taken from 5*b* region
- > Key assumption 2: yield ratio N_{5b} / N_{4b} = yield ratio N_{6b} / N_{5b}
 - \rightarrow Background **normalisation** by extrapolating yields from 4b and 5b regions
- Validate assumptions in low-score regions and derive systematic uncertainties

Constraining VVhh in vector-boson fusion

- > Search primarily statistics-limited but Xbb tagging uncertainties also have a notable impact
- Interplay between boosted and resolved channels:
 - Resolved more sensitive to κ_{λ} , boosted more sensitive to κ_{2V}

Search for VBF production in boosted bbbb events

- > Main background from QCD multi-jet production estimated from data
 - Both multi-*b*-final states and events with mis-identified *b*-jets (10% ttbar events in total)
- Normalisation factor calculated as event ratio between 2Pass and 1Pass CR
 - $w = 0.0081 \pm 0.0010$
 - Signal contamination in 1Pass CR is <8% in highest BDT bin (below stats uncertainty)

Search for VBF production in boosted *bbb* **events**

- > Search primarily statistics-limited but Xbb tagging uncertainties also have a notable impact
- Interplay between boosted and resolved channels:
 - Resolved more sensitive to κ_{λ} , boosted more sensitive to κ_{2V}

> Z+bb

- With $Z \rightarrow \tau \tau$
- Also: Z \rightarrow ee, $\mu\mu$ with additional missing energy from mis-measurements
- > tt \rightarrow (Wb)(Wb)
 - With (Wb)(Wb) \rightarrow ($\tau\nu$)b($\tau\nu$)b
 - Also (Wb)(Wb) \rightarrow (evb)(μ vb) ...

Quiz question: What SM processes can result in a $bb\tau\tau$ final state?

Complex analysis strategy for the bbtt channel

- > Backgrounds estimated from simulation and corrected using data in control regions
- > Simultaneous fit of predictions to data: BDT scores in each signal region + distributions in control regions

Complex analysis strategy for the bbtt channel

> Simultaneous fit of predictions to data: BDT scores in each signal region + distributions in control regions

Analysis strategy of the bbyy channel

- > Mass resolution of Higgs candidate from *yy* much better than *bb*
 - Use m_{yy} as discriminating variable instead of m_{yybb}
- > Main backgrounds from real photons produced in association with jets \rightarrow taken from simulation

Analysis strategy of the bbyy channel

- > Multivariate methods to improve signal-background discrimination
 - Trained separately in different m_{bbyy} regions for better sensitivity
- > Fit analytic function for signal+background hypothesis to data in each signal region
 - Similar to Higgs-boson discovery and measurements in yy decay channel

Resonant Higgs pair production

- > BSM theories predict extra heavy states that can decay into a pair of Higgs bosons: $pp \rightarrow X \rightarrow hh$
 - More details tomorrow
- > Search for local "bump" in hh invariant mass spectrum (similar to 2012 Higgs discovery)

First search for triple Higgs production

> Final states with six b-quarks: largest branching ratio, large background from multijet production

First search for triple Higgs production

- > Signal regions: events with at least 6 *b*-tagged jets
- Control & validation regions: events with ==5 and ==4 b-tagged jets
- > Higgs reconstruction: three *b*-jet pairs that minimises

 $|m_{h1} - 120 \text{ GeV}| + |m_{h2} - 115 \text{ GeV}| + |m_{h3} - 110 \text{ GeV}|$

where $p_{T,h1} > p_{T,h2} > p_{T,h3}$

> DNNs to discriminate between signal and background

Results

- > First experimental constraints on κ_4 , first constraints beyond unitarity constraints!
- > Limited by available data statistics and achievable signal-background ratio
- > Significant improvement expected at HL-LHC (studies on-going)

- > Searches in cleaner channels have started:
 - Most promising: 4b2τ

