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What’s special about Physics?
Different fields, unified by digitisation challenges:


• Immense data volumes with high complexity


• Weak signals overshadowed by much larger 
background processes


• Large data-throughput requiring custom 
solutions


The planned Square Kilometre 
Array (SKA) telescope will produce 
one exabyte of raw data/day  
(~10 PB after compression)



What’s special about Physics?
Different fields, unified by digitisation challenges:


• Immense data volumes with high complexity


• Weak signals overshadowed by much larger 
background processes


• Large data-throughput requiring custom 
solutions


At the High Luminosity LHC, 
overlapping collisions mean that 
thousands of trajectories need to 
be reconstructed in parallel
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Different fields, unified by digitisation challenges:


• Immense data volumes with high complexity


• Weak signals overshadowed by much larger 
background processes 

• Large data-throughput requiring custom 
solutions


Rare interesting processes only 
occur in 1 of 10 billion events in  

particle physics experiments

What’s special about Physics?



Different fields, unified by digitisation challenges:


• Immense data volumes with high complexity


• Weak signals overshadowed by much larger 
background processes


• Large data-throughput requiring custom 
solutions 

Trigger systems filter 40 million 
particle collisions/second at 

experiments at the Large Hadron 
Collider (LHC) at CERN

What’s special about Physics?



200+ papers in 2024 
 
Similar for nucl-ex, 
astro-ph, hep-ph, …

Rapid rise of AI in fundamental physics 

Transition from concepts to applications


Recognition of AI work as Nobel-prize worthy

State of AI in Physics

See also https://iml-wg.github.io/HEPML-LivingReview/



Plan

• Lecture 1:


• Basics of Neural Networks


• Classification example: Top Tagging


• Lecture 2:


• Generative Models


• Anomaly Detection
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https://www.worldscientific.com/
worldscibooks/
10.1142/12294#t=aboutBook 
(available in UHH library)

Resources

Free online: https://www.deeplearningbook.org/ Lecture Slides

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
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Learning like a machine



Terminology
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Artificial Intelligence (AI) 
General term

Machine Learning (ML)

Also includes e.g. boosted decision 

trees (BDTs), shallow neural networks, ..

Deep Learning (DL)

Neural networks with many layers,  

unprocessed inputs



Terminology
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Artificial Intelligence (AI) 
General term

Machine Learning (ML)

Also includes e.g. boosted decision 

trees (BDTs), shallow neural networks, ..

Deep Learning (DL) 
Neural networks with many layers,  

unprocessed inputs
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Basic idea
• Classical approach:


• Write a sequence of instructions to solve a specific task


• e.g.:


• Tracking algorithm


• Jet clustering


• Calculation of physical  
observables
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Basic idea

• Machine learning approach:


• Rephrase task as a minimisation problem..


• ..and “simply” solve: 
 
 

• Will now go step-by-step to understand the 
underlying ideas, focusing on neural networks.

✓⇤ = argmin✓ Ex⇠p(x) [L(f✓(x),x)]

<latexit sha1_base64="RO46pFIGOAol09qGQPC65vT/S8c="></latexit>
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General Strategy

• Define an optimisation target (loss function)Loss function L

<latexit sha1_base64="Ztw4HgTOO3yzUasXz6S9zUSOZY4=">AAACE3icbVDLSsNAFJ34rPUVdelmsCjioiRSqaWbohsXXVSwD2hCmUwn7dDJJMxMhBL6D278FTcuFHHrxp1/4yQN4uvAhTPn3Mvce7yIUaks68NYWFxaXlktrBXXNza3ts2d3Y4MY4FJG4csFD0PScIoJ21FFSO9SBAUeIx0vcll6ndviZA05DdqGhE3QCNOfYqR0tLAPHECpMYiSJqhlE7djzlOjRl06kcw8zBiSVO/nYFZsspWBviX2DkpgRytgfnuDEMcB4QrzJCUfduKlJsgoShmZFZ0YkkihCdoRPqachQQ6SbZTTN4qJUh9EOhiyuYqd8nEhRIOQ083ZluKX97qfif14+Vf+4mlEexIhzPP/JjBlUI04DgkAqCFZtqgrCgeleIx0ggrHSMxSyEWgY4J9VKTmr2Vwid07JdKZ9dV0qNizyOAtgHB+AY2KAKGuAKtEAbYHAHHsATeDbujUfjxXidty4Y+cwe+AHj7RMaCJ6x</latexit>



Supervised Learning: 
Attempt to infer some target (truth label):  
classification, regression (often also clustering/inference)


Use training data with known labels 
(often from Monte Carlo simulation)

observable features 
such as kinematics, 
tracks,…

truth label  
(e.g. true energy)

Learn to predict:


predicted energy

x

<latexit sha1_base64="DWwq7n5/7Zg+3Iw6iqaeFlde4rM=">AAAB8XicbZBLSwMxFIXv1Fetr6pLN8EiuCozUqndFQRxWcE+sC0lk2ba0ExmSDJiGQr+CDcuFHHrv3HnvzHzQHwdCHyce0NOjhtyprRtf1iFpeWV1bXiemljc2t7p7y711FBJAltk4AHsudiRTkTtK2Z5rQXSop9l9OuOztP5t1bKhULxLWeh3To44lgHiNYG+tm4GM9db34bjEqV+yqnQr9BSeHCuRqjcrvg3FAIp8KTThWqu/YoR7GWGpGOF2UBpGiISYzPKF9gwL7VA3jNPECHRlnjLxAmiM0St3vN2LsKzX3XbOZJFS/Z4n536wfae9sGDMRRpoKkj3kRRzpACXfR2MmKdF8bgATyUxWRKZYYqJNSaW0hEYqlEG9lkPD+Sqhc1J1atXTq1qleXGf1VGEAziEY3CgDk24hBa0gYCAB3iCZ0tZj9aL9ZqtFqy8wn34IevtE2UKkjg=</latexit>

y

<latexit sha1_base64="DiXy6ToAYGLmqmqJu6nbx6foUks=">AAAB6HicbZBLSwMxFIUz9VXrq+rSTbAIrsqMVGp3BUFctmAf0A4lk962sZnMkGSEYSi4d+NCEbf+JHf+G9OZQXwdCHycc0NujhdyprRtf1iFldW19Y3iZmlre2d3r7x/0FVBJCl0aMAD2feIAs4EdDTTHPqhBOJ7HHre/HKZ9+5AKhaIGx2H4PpkKtiEUaKN1Y5H5YpdtVPhv+DkUEG5WqPy+3Ac0MgHoSknSg0cO9RuQqRmlMOiNIwUhITOyRQGBgXxQblJuugCnxhnjCeBNEdonLrfbyTEVyr2PTPpEz1Tv7Ol+V82iPTkwk2YCCMNgmYPTSKOdYCXv8ZjJoFqHhsgVDKzK6YzIgnVpptSWkIjFc6gXsuh4XyV0D2rOrXqebtWaV7dZ3UU0RE6RqfIQXXURNeohTqIIkAP6Ak9W7fWo/VivWajBSuv8BD9kPX2CU+Ojhk=</latexit>

ŷ = f✓(x)

<latexit sha1_base64="p1zalh7uwr/1m2ldlnUEIT462L0=">AAACB3icbZBLS8NAFIUnPmt9VV0KMliEuimJVGoXQkEQlxXsA5oQJtNJM3TyYOZGDKHgwo1/xY0LRdz6F9z5b0zTIr4ODBzOucPc+ZxIcAW6/qHNzS8sLi0XVoqra+sbm6Wt7Y4KY0lZm4YilD2HKCZ4wNrAQbBeJBnxHcG6zuhs0nevmVQ8DK4giZjlk2HAXU4JZJFd2jM9AmkyxqfYtU3wGJCK6RPwHDe9GR/apbJe1XPhv8aYmTKaqWWX3s1BSGOfBUAFUapv6BFYKZHAqWDjohkrFhE6IkPWz2xAfKasNP/HGB9kyQC7ocxOADhPv99Iia9U4jvZ5GRF9bubhP91/RjcEyvlQRQDC+j0ITcWGEI8gYIHXDIKIskMoZJnu2LqEUkoZOiKOYRGLjw19drMNIwvCJ2jqlGrHl/Wys3z2ymOAtpF+6iCDFRHTXSBWqiNKLpDD+gJPWv32qP2or1OR+e0GcId9EPa2ycHJ5pA</latexit>

ŷ

<latexit sha1_base64="2tv1DaKm0mw8RdWjDVuqv7e/qEM=">AAACEHicbZBLS8NAFIUn9VXjq+rSzWAp1k1JpFK7EAqCuKxgH9CEMplO2qGTBzM3YgkF/4Ab/4obF4q4denOf2OaBvF1YODjnDvMneOEgiswjA8tt7C4tLySX9XX1jc2twrbO20VRJKyFg1EILsOUUxwn7WAg2DdUDLiOYJ1nPHZLO9cM6l44F/BJGS2R4Y+dzklkFj9wkHJGhGIJ1N8it2+BSMGpGx5BEaOG99MD/Us7heKRsVIhf+CmUERZWr2C+/WIKCRx3yggijVM40Q7JhI4FSwqW5FioWEjsmQ9RL0iceUHacfmuJS4gywG8jk+IBT9/uNmHhKTTwnmZytqn5nM/O/rBeBe2LH3A8jYD6dP+RGAkOAZ+3gAZeMgpgkQKjkya6YjogkFJIO9bSEeio8h1o1g7r5VUL7qGJWK8eX1WLj/HZeRx7toX1URiaqoQa6QE3UQhTdoQf0hJ61e+1Re9Fe56M5LatwF/2Q9vYJof2d0w==</latexit>

L = (y � ŷ)2

<latexit sha1_base64="Uqg0bNMXp3D49SS+wIMVatCUB3w="></latexit>

Regression: Minimize mean squared error:

Loss function: Supervised



Classification Tasks

Images

Distinguish a pair of classes (binary) or several (multi-class).

Loss function: Cross entropy

L = �y log (ŷ)� (1� y) log (1� ŷ)

<latexit sha1_base64="xBi5HWc2w2gcLB5X83fpaBKnjqs=">AAACSnicbZDNSxtBGMZn42fTqqk99jIYhOSQsCsR9VAQhNKDBwWjQjaEdyezyZDZD2beFZcl4H/nxZM3/4heeqiIF2c/KtX2gYGH53mHeefnxVJotO0Hq7awuLS8svqh/vHT2vpG4/PmuY4SxXifRTJSlx5oLkXI+yhQ8stYcQg8yS+82VHeX1xxpUUUnmEa82EAk1D4ggGaaNSAbXcKmKVz+o36IxenHKHlBoBTz8+u5+36n75ehAxkdpzPdlJXRpOsVbXtOe3QltNJ22XsdF6LUaNpd+1C9F/jVKZJKp2MGvfuOGJJwENkErQeOHaMwwwUCia5WSTRPAY2gwkfGBtCwPUwK1DM6bZJxtSPlDkh0iL9+0YGgdZp4JnJ/D/6fZeH/+sGCfr7w0yEcYI8ZOVDfiIpRjTnSsdCcYYyNQaYEmZXyqaggKGhXy8gHBSipdnrVebAeYVwvtN1et3d017z8PtNiWOVfCVbpEUcskcOyQ9yQvqEkVvyk/wmj9ad9ct6sp7L0ZpVIfxC3qi2+AJT8rK5</latexit>



Classification Tasks

ParticlesEvent Topologies

Distinguish a pair of classes (binary) or several (multi-class).

Loss function: Cross entropy

L = �y log (ŷ)� (1� y) log (1� ŷ)

<latexit sha1_base64="xBi5HWc2w2gcLB5X83fpaBKnjqs="></latexit>
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Loss function: Unsupervised
Unsupervised Learning: 
No target, learn the probability 
distribution (directly from data)


Can use for sampling, anomaly 
detection, unfolding, …


Learn to  
predict:

True probablity  
density

x

<latexit sha1_base64="DWwq7n5/7Zg+3Iw6iqaeFlde4rM=">AAAB8XicbZBLSwMxFIXv1Fetr6pLN8EiuCozUqndFQRxWcE+sC0lk2ba0ExmSDJiGQr+CDcuFHHrv3HnvzHzQHwdCHyce0NOjhtyprRtf1iFpeWV1bXiemljc2t7p7y711FBJAltk4AHsudiRTkTtK2Z5rQXSop9l9OuOztP5t1bKhULxLWeh3To44lgHiNYG+tm4GM9db34bjEqV+yqnQr9BSeHCuRqjcrvg3FAIp8KTThWqu/YoR7GWGpGOF2UBpGiISYzPKF9gwL7VA3jNPECHRlnjLxAmiM0St3vN2LsKzX3XbOZJFS/Z4n536wfae9sGDMRRpoKkj3kRRzpACXfR2MmKdF8bgATyUxWRKZYYqJNSaW0hEYqlEG9lkPD+Sqhc1J1atXTq1qleXGf1VGEAziEY3CgDk24hBa0gYCAB3iCZ0tZj9aL9ZqtFqy8wn34IevtE2UKkjg=</latexit>

p̂(x) = f✓(x)

<latexit sha1_base64="zOVnzhLT3MpRM2vLFWOIdKsK7sc=">AAACE3icbZBLS8NAFIUn9VXrK+rSzWARqouSSKV2IRQEcVnBPqApZTKdtEMnD2ZuxBIC/gQ3/hU3LhRx68ad/8Y0KVIfBwYO59xh7nx2ILgCw/jUcguLS8sr+dXC2vrG5pa+vdNSfigpa1Jf+LJjE8UE91gTOAjWCSQjri1Y2x6fT/v2DZOK+941TALWc8nQ4w6nBJKorx9ZIwJREJcsl8DIdqLb+BCfYadvwYgBmY/7etEoG6nwX2POTBHN1OjrH9bAp6HLPKCCKNU1jQB6EZHAqWBxwQoVCwgdkyHrJtYjLlO9KP1TjA+SZIAdXybHA5ym8zci4io1ce1kcrqi+t1Nw/+6bgjOaS/iXhAC82j2kBMKDD6eAsIDLhkFMUkMoZInu2I6IpJQSDAWUgi1VDgz1crM1MxvCK3jslkpn1xVivWLuwxHHu2hfVRCJqqiOrpEDdREFN2jR/SMXrQH7Ul71d6y0Zw2Q7iLfkh7/wJGXJ8+</latexit>

p(x)

<latexit sha1_base64="qEW91vEqNeLb6My8q3Y/RqBmRPs="></latexit>

L = � log (p̂(x))

<latexit sha1_base64="WGreNv5Aa0BFqtpYPBORUGR0Hu8=">AAACT3icbZFLSwMxFIUz9V1fVZdugqVQF5YZqagLQRDEhQsFq0KnlDtppg1mHiR3xDIM+APd6M6/4caFIqbTQXwdCHw5Nze5nHixFBpt+9kqTUxOTc/MzpXnFxaXlisrq5c6ShTjLRbJSF17oLkUIW+hQMmvY8Uh8CS/8m6ORvWrW660iMILHMa8E0A/FL5ggMbqVvyaOwBM46zuBoADz0/vsk16QP2uiwOO8N0u1+If25wZyPQ0Mx1b1JVRP63/c99m1q1U7Yadi/4Fp4AqKXTWrTy5vYglAQ+RSdC67dgxdlJQKJjkWdlNNI+B3UCftw2GEHDdSfM8MlozTo/6kTIrRJq73ztSCLQeBp45ORpS/66NzP9q7QT9vU4qwjhBHrLxQ34iKUZ0FC7tCcUZyqEBYEqYWSkbgAKG5gvKeQj7uegYdpsF7DtfIVxuN5xmY+e8WT08vh/HMUvWyQapE4fskkNyQs5IizDyQF7IG3m3Hq1X66NUJFeyClgjP1Sa+wTsj7Sw</latexit>

Distribution learning: Maximise likelihood 
(minimize log-likelihood): 
(either directly or with approximations)

*There also exists a number of 
other less-than-supervised 
approaches (weakly  
supervised learning, semi-
supervised learning, …) Not so 
important for now.
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General Strategy

✓⇤ = argmin✓ Ex⇠p(x) [L(f✓(x),x)]

<latexit sha1_base64="gPsOsfABelz1DcyBQdAIwNz5wjY="></latexit>

Loss function L X
Neural network f✓

Parameters ✓

Opt. Parameters ✓⇤

Data x

Data distribution p(x)

<latexit sha1_base64="2fUR93k/bUw0kuEmk6B6jXiem+o="></latexit>
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General Strategy

• Define an optimisation target (loss function)


• Choose a non-linear, expressive, parametrised 
function (e.g. a neural network)

Loss function L
Neural network f✓

Parameters ✓

<latexit sha1_base64="KSyMPHJyxh5zFUidqVOAxPjf0js="></latexit>
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Neural networks
We need an expressive function  
(universal approximator)  
with tuneable parameters and useful  
implicit biases

Input Layer Hidden Layer Output Layer

x1

<latexit sha1_base64="NU5V4RxPfEZ3ZNyzcpMyHpK1M+M=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8EiuCqJRGp3BTcuK9oLtKFMppN26GQSZiZiCX0ENy4UcesTufNtnKZBvP0w8PGfczhn/iDhTGnH+bBKK6tr6xvlzcrW9s7unr1/0FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuML1c1Lt3VCoWi1s9S6gf4bFgISNYG+vmfugO7apTc3Khv+AWUIVCraH9PhjFJI2o0IRjpfquk2g/w1Izwum8MkgVTTCZ4jHtGxQ4osrP8lPn6MQ4IxTG0jyhUe5+n8hwpNQsCkxnhPVE/a4tzP9q/VSHF37GRJJqKshyUZhypGO0+DcaMUmJ5jMDmEhmbkVkgiUm2qRTyUNo5EJLqHsFNNyvEDpnNdernV971aZXxFGGIziGU3ChDk24gha0gcAYHuAJni1uPVov1uuytWQVM4fwQ9bbJ0gIjio=</latexit>

x2

<latexit sha1_base64="3IodYdvZFK69JfaClKe8MFd0jDA=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8EiuCpJSandFdy4rGgv0IYymU7aoZNJmJmIJfQR3LhQxK1P5M63cZoG8fbDwMd/zuGc+f2YM6Vt+8MqrK1vbG4Vt0s7u3v7B+XDo66KEkloh0Q8kn0fK8qZoB3NNKf9WFIc+pz2/Nnlst67o1KxSNzqeUy9EE8ECxjB2lg396PaqFyxq3Ym9BecHCqQqz0qvw/HEUlCKjThWKmBY8faS7HUjHC6KA0TRWNMZnhCBwYFDqny0uzUBTozzhgFkTRPaJS53ydSHCo1D33TGWI9Vb9rS/O/2iDRwYWXMhEnmgqyWhQkHOkILf+NxkxSovncACaSmVsRmWKJiTbplLIQmpnQChpuDk3nK4Rureq41fq1W2m5eRxFOIFTOAcHGtCCK2hDBwhM4AGe4Nni1qP1Yr2uWgtWPnMMP2S9fQJJjI4r</latexit>
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<latexit sha1_base64="uA+XASYob+sPRtMBiQ7U8+OJYVg=">AAAB7XicbZDLSgMxFIbPeK31VnXpJlgEV2VGRmp3BTcuK9gLtEPJpJk2NpMMSUYoQ9/BjQtF3Po+7nwb0+kg3n4IfPznHM7JHyacaeO6H87K6tr6xmZpq7y9s7u3Xzk47GiZKkLbRHKpeiHWlDNB24YZTnuJojgOOe2G06tFvXtPlWZS3JpZQoMYjwWLGMHGWp3uMPO8+bBSdWtuLvQXvAKqUKg1rLwPRpKkMRWGcKx133MTE2RYGUY4nZcHqaYJJlM8pn2LAsdUB1l+7RydWmeEIqnsEwbl7veJDMdaz+LQdsbYTPTv2sL8r9ZPTXQZZEwkqaGCLBdFKUdGosXX0YgpSgyfWcBEMXsrIhOsMDE2oHIeQiMXWkLdL6DhfYXQOa95fu3ixq82/SKOEhzDCZyBB3VowjW0oA0E7uABnuDZkc6j8+K8LltXnGLmCH7IefsESuiPUA==</latexit>

W12

<latexit sha1_base64="fcSz86L661E+/aAEdrlW+W5x3+g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozpVK7K7hxWcFeoB1KJs20sZlkSDJCGfoOblwo4tb3cefbmE4H8fZD4OM/53BO/iDmTBvX/XAKa+sbm1vF7dLO7t7+QfnwqKtlogjtEMml6gdYU84E7RhmOO3HiuIo4LQXzK6W9d49VZpJcWvmMfUjPBEsZAQba3V7o9SrLUblilt1M6G/4OVQgVztUfl9OJYkiagwhGOtB54bGz/FyjDC6aI0TDSNMZnhCR1YFDii2k+zaxfozDpjFEplnzAoc79PpDjSeh4FtjPCZqp/15bmf7VBYsJLP2UiTgwVZLUoTDgyEi2/jsZMUWL43AImitlbEZlihYmxAZWyEJqZ0Aoa9Rya3lcI3VrVq1cvbuqVVj2PowgncArn4EEDWnANbegAgTt4gCd4dqTz6Lw4r6vWgpPPHMMPOW+fTG2PUQ==</latexit>

W21

<latexit sha1_base64="nUCizqjVfnm3jDaypB9hs6u8KdI=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozpVK7K7hxWcFeoB1KJs20sZlkSDJCGfoOblwo4tb3cefbmE4H8fZD4OM/53BO/iDmTBvX/XAKa+sbm1vF7dLO7t7+QfnwqKtlogjtEMml6gdYU84E7RhmOO3HiuIo4LQXzK6W9d49VZpJcWvmMfUjPBEsZAQba3V7o7TmLUblilt1M6G/4OVQgVztUfl9OJYkiagwhGOtB54bGz/FyjDC6aI0TDSNMZnhCR1YFDii2k+zaxfozDpjFEplnzAoc79PpDjSeh4FtjPCZqp/15bmf7VBYsJLP2UiTgwVZLUoTDgyEi2/jsZMUWL43AImitlbEZlihYmxAZWyEJqZ0Aoa9Rya3lcI3VrVq1cvbuqVVj2PowgncArn4EEDWnANbegAgTt4gCd4dqTz6Lw4r6vWgpPPHMMPOW+fTG6PUQ==</latexit>

W22

<latexit sha1_base64="rxlX7lO9Q+ulz1WVjVZB/Qs8tgw=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozpVK7K7hxWcFeoB1KJs20sZlkSDJCGfoOblwo4tb3cefbmE4H8fZD4OM/53BO/iDmTBvX/XAKa+sbm1vF7dLO7t7+QfnwqKtlogjtEMml6gdYU84E7RhmOO3HiuIo4LQXzK6W9d49VZpJcWvmMfUjPBEsZAQba3V7o7RWW4zKFbfqZkJ/wcuhArnao/L7cCxJElFhCMdaDzw3Nn6KlWGE00VpmGgaYzLDEzqwKHBEtZ9m1y7QmXXGKJTKPmFQ5n6fSHGk9TwKbGeEzVT/ri3N/2qDxISXfspEnBgqyGpRmHBkJFp+HY2ZosTwuQVMFLO3IjLFChNjAyplITQzoRU06jk0va8QurWqV69e3NQrrXoeRxFO4BTOwYMGtOAa2tABAnfwAE/w7Ejn0XlxXletBSefOYYfct4+AU3zj1I=</latexit>

x0
1

<latexit sha1_base64="3uWHSs/p07k2sqZ/+0Nwxyy3hsE=">AAAB63icbZDLSsNAFIZP6q3WW9Wlm8EiuiqJRGp3BTcuK9gLtKFMppN26MwkzEzEEvoKblwo4tYXcufbmKRBvP0w8PGfczhnfj/iTBvb/rBKK6tr6xvlzcrW9s7uXnX/oKvDWBHaISEPVd/HmnImaccww2k/UhQLn9OeP7vK6r07qjQL5a2ZR9QTeCJZwAg2mXV/OnJG1Zpdt3Ohv+AUUINC7VH1fTgOSSyoNIRjrQeOHRkvwcowwumiMow1jTCZ4QkdpCixoNpL8lsX6CR1xigIVfqkQbn7fSLBQuu58NNOgc1U/65l5n+1QWyCSy9hMooNlWS5KIg5MiHKPo7GTFFi+DwFTBRLb0VkihUmJo2nkofQzIWW0HALaDpfIXTP645bv7hxay23iKMMR3AMZ+BAA1pwDW3oAIEpPMATPFvCerRerNdla8kqZg7hh6y3T6jSjls=</latexit>

x0
2

<latexit sha1_base64="0NqQkjGLfHR3yQgJQH1UYyZo66Q=">AAAB63icbZDLSsNAFIZP6q3WW9Wlm8EiuipJidTuCm5cVrC10IYymU7aoTOTMDMRS+gruHGhiFtfyJ1vY5IG8fbDwMd/zuGc+f2IM21s+8MqrayurW+UNytb2zu7e9X9g54OY0Vol4Q8VH0fa8qZpF3DDKf9SFEsfE5v/dllVr+9o0qzUN6YeUQ9gSeSBYxgk1n3p6PGqFqz63Yu9BecAmpQqDOqvg/HIYkFlYZwrPXAsSPjJVgZRjhdVIaxphEmMzyhgxQlFlR7SX7rAp2kzhgFoUqfNCh3v08kWGg9F37aKbCZ6t+1zPyvNohNcOElTEaxoZIsFwUxRyZE2cfRmClKDJ+ngIli6a2ITLHCxKTxVPIQWrnQEppuAS3nK4Reo+649fNrt9Z2izjKcATHcAYONKENV9CBLhCYwgM8wbMlrEfrxXpdtpasYuYQfsh6+wSqVo5c</latexit>

W 0
11

<latexit sha1_base64="QOZx8aZ1vw5R/dHOqF7zmifvPXA=">AAAB7nicbZDLSsNAFIZP6q3WW9Wlm8EiuiqJpNTuCm5cVrBNoQ1lMp20QyeTMDMRSuhDuHGhiFufx51v4zQN4u2HgY//nMM58wcJZ0rb9odVWlvf2Nwqb1d2dvf2D6qHRz0Vp5LQLol5LPsBVpQzQbuaaU77iaQ4Cjj1gtn1su7dU6lYLO70PKF+hCeChYxgbSzPOx9ljrMYVWt23c6F/oJTQA0KdUbV9+E4JmlEhSYcKzVw7ET7GZaaEU4XlWGqaILJDE/owKDAEVV+lp+7QGfGGaMwluYJjXL3+0SGI6XmUWA6I6yn6ndtaf5XG6Q6vPIzJpJUU0FWi8KUIx2j5d/RmElKNJ8bwEQycysiUywx0SahSh5CKxdaQdMtoOV8hdC7rDtuvXHr1tpuEUcZTuAULsCBJrThBjrQBQIzeIAneLYS69F6sV5XrSWrmDmGH7LePgGsDI+B</latexit>

W 0
12

<latexit sha1_base64="boEIKNiodGNN6o/FPVKNyZn9tzU=">AAAB7nicbZDLSsNAFIZP6q3WW9Wlm8EiuipJidTuCm5cVrBNoQ1lMp20QyeTMDMRSuhDuHGhiFufx51v4zQN4u2HgY//nMM58wcJZ0rb9odVWlvf2Nwqb1d2dvf2D6qHRz0Vp5LQLol5LPsBVpQzQbuaaU77iaQ4Cjj1gtn1su7dU6lYLO70PKF+hCeChYxgbSzPOx9lTmMxqtbsup0L/QWngBoU6oyq78NxTNKICk04Vmrg2In2Myw1I5wuKsNU0QSTGZ7QgUGBI6r8LD93gc6MM0ZhLM0TGuXu94kMR0rNo8B0RlhP1e/a0vyvNkh1eOVnTCSppoKsFoUpRzpGy7+jMZOUaD43gIlk5lZEplhiok1ClTyEVi60gqZbQMv5CqHXqDtu/fLWrbXdIo4ynMApXIADTWjDDXSgCwRm8ABP8Gwl1qP1Yr2uWktWMXMMP2S9fQKtkY+C</latexit>

ŷ

<latexit sha1_base64="ajjEjIVQi9ucUlChtVotu0C8zR8=">AAAB7nicbZDJSgNBEIZr4hbjFvXopTEInsKMRGJuAS8eI5gFkiH0dHqSJj0L3TXCMOQhvHhQxKvP4823sTMZxO2Hho+/qqjq34ul0GjbH1ZpbX1jc6u8XdnZ3ds/qB4e9XSUKMa7LJKRGnhUcylC3kWBkg9ixWngSd735tfLev+eKy2i8A7TmLsBnYbCF4yisfqjGcUsXYyrNbtu5yJ/wSmgBoU64+r7aBKxJOAhMkm1Hjp2jG5GFQom+aIySjSPKZvTKR8aDGnAtZvl5y7ImXEmxI+UeSGS3P0+kdFA6zTwTGdAcaZ/15bmf7Vhgv6Vm4kwTpCHbLXITyTBiCz/TiZCcYYyNUCZEuZWwmZUUYYmoUoeQisXWUGzUUDL+Qqhd1F3GvXL20at3SjiKMMJnMI5ONCENtxAB7rAYA4P8ATPVmw9Wi/W66q1ZBUzx/BD1tsn7hmQVA==</latexit>
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Neural Networks
We need an expressive 
function  
(universal approximator)  
with tuneable parameters: 
Neural networks



300 weights

25 million weights:  
2016 state of the art for 

image classification

Deep Learning:  
Complex network + low level inputs

6 weights

175  billion weights: 2020 
GPT-3 text  model 

(GPT-4 ~1.8  trillion 
weights)

Complexity

Input Layer Hidden Layer Output Layer

x1

<latexit sha1_base64="NU5V4RxPfEZ3ZNyzcpMyHpK1M+M=">AAAB6nicbZDLSsNAFIZP6q3WW9Slm8EiuCqJRGp3BTcuK9oLtKFMppN26GQSZiZiCX0ENy4UcesTufNtnKZBvP0w8PGfczhn/iDhTGnH+bBKK6tr6xvlzcrW9s7unr1/0FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuML1c1Lt3VCoWi1s9S6gf4bFgISNYG+vmfugO7apTc3Khv+AWUIVCraH9PhjFJI2o0IRjpfquk2g/w1Izwum8MkgVTTCZ4jHtGxQ4osrP8lPn6MQ4IxTG0jyhUe5+n8hwpNQsCkxnhPVE/a4tzP9q/VSHF37GRJJqKshyUZhypGO0+DcaMUmJ5jMDmEhmbkVkgiUm2qRTyUNo5EJLqHsFNNyvEDpnNdernV971aZXxFGGIziGU3ChDk24gha0gcAYHuAJni1uPVov1uuytWQVM4fwQ9bbJ0gIjio=</latexit>

x2

<latexit sha1_base64="3IodYdvZFK69JfaClKe8MFd0jDA=">AAAB6nicbZDLSsNAFIZP6q3WW9Wlm8EiuCpJSandFdy4rGgv0IYymU7aoZNJmJmIJfQR3LhQxK1P5M63cZoG8fbDwMd/zuGc+f2YM6Vt+8MqrK1vbG4Vt0s7u3v7B+XDo66KEkloh0Q8kn0fK8qZoB3NNKf9WFIc+pz2/Nnlst67o1KxSNzqeUy9EE8ECxjB2lg396PaqFyxq3Ym9BecHCqQqz0qvw/HEUlCKjThWKmBY8faS7HUjHC6KA0TRWNMZnhCBwYFDqny0uzUBTozzhgFkTRPaJS53ydSHCo1D33TGWI9Vb9rS/O/2iDRwYWXMhEnmgqyWhQkHOkILf+NxkxSovncACaSmVsRmWKJiTbplLIQmpnQChpuDk3nK4Rureq41fq1W2m5eRxFOIFTOAcHGtCCK2hDBwhM4AGe4Nni1qP1Yr2uWgtWPnMMP2S9fQJJjI4r</latexit>

W11

<latexit sha1_base64="uA+XASYob+sPRtMBiQ7U8+OJYVg=">AAAB7XicbZDLSgMxFIbPeK31VnXpJlgEV2VGRmp3BTcuK9gLtEPJpJk2NpMMSUYoQ9/BjQtF3Po+7nwb0+kg3n4IfPznHM7JHyacaeO6H87K6tr6xmZpq7y9s7u3Xzk47GiZKkLbRHKpeiHWlDNB24YZTnuJojgOOe2G06tFvXtPlWZS3JpZQoMYjwWLGMHGWp3uMPO8+bBSdWtuLvQXvAKqUKg1rLwPRpKkMRWGcKx133MTE2RYGUY4nZcHqaYJJlM8pn2LAsdUB1l+7RydWmeEIqnsEwbl7veJDMdaz+LQdsbYTPTv2sL8r9ZPTXQZZEwkqaGCLBdFKUdGosXX0YgpSgyfWcBEMXsrIhOsMDE2oHIeQiMXWkLdL6DhfYXQOa95fu3ixq82/SKOEhzDCZyBB3VowjW0oA0E7uABnuDZkc6j8+K8LltXnGLmCH7IefsESuiPUA==</latexit>

W12

<latexit sha1_base64="fcSz86L661E+/aAEdrlW+W5x3+g=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozpVK7K7hxWcFeoB1KJs20sZlkSDJCGfoOblwo4tb3cefbmE4H8fZD4OM/53BO/iDmTBvX/XAKa+sbm1vF7dLO7t7+QfnwqKtlogjtEMml6gdYU84E7RhmOO3HiuIo4LQXzK6W9d49VZpJcWvmMfUjPBEsZAQba3V7o9SrLUblilt1M6G/4OVQgVztUfl9OJYkiagwhGOtB54bGz/FyjDC6aI0TDSNMZnhCR1YFDii2k+zaxfozDpjFEplnzAoc79PpDjSeh4FtjPCZqp/15bmf7VBYsJLP2UiTgwVZLUoTDgyEi2/jsZMUWL43AImitlbEZlihYmxAZWyEJqZ0Aoa9Rya3lcI3VrVq1cvbuqVVj2PowgncArn4EEDWnANbegAgTt4gCd4dqTz6Lw4r6vWgpPPHMMPOW+fTG2PUQ==</latexit>

W21

<latexit sha1_base64="nUCizqjVfnm3jDaypB9hs6u8KdI=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozpVK7K7hxWcFeoB1KJs20sZlkSDJCGfoOblwo4tb3cefbmE4H8fZD4OM/53BO/iDmTBvX/XAKa+sbm1vF7dLO7t7+QfnwqKtlogjtEMml6gdYU84E7RhmOO3HiuIo4LQXzK6W9d49VZpJcWvmMfUjPBEsZAQba3V7o7TmLUblilt1M6G/4OVQgVztUfl9OJYkiagwhGOtB54bGz/FyjDC6aI0TDSNMZnhCR1YFDii2k+zaxfozDpjFEplnzAoc79PpDjSeh4FtjPCZqp/15bmf7VBYsJLP2UiTgwVZLUoTDgyEi2/jsZMUWL43AImitlbEZlihYmxAZWyEJqZ0Aoa9Rya3lcI3VrVq1cvbuqVVj2PowgncArn4EEDWnANbegAgTt4gCd4dqTz6Lw4r6vWgpPPHMMPOW+fTG6PUQ==</latexit>

W22

<latexit sha1_base64="rxlX7lO9Q+ulz1WVjVZB/Qs8tgw=">AAAB7XicbZDLSgMxFIbP1Futt6pLN8EiuCozpVK7K7hxWcFeoB1KJs20sZlkSDJCGfoOblwo4tb3cefbmE4H8fZD4OM/53BO/iDmTBvX/XAKa+sbm1vF7dLO7t7+QfnwqKtlogjtEMml6gdYU84E7RhmOO3HiuIo4LQXzK6W9d49VZpJcWvmMfUjPBEsZAQba3V7o7RWW4zKFbfqZkJ/wcuhArnao/L7cCxJElFhCMdaDzw3Nn6KlWGE00VpmGgaYzLDEzqwKHBEtZ9m1y7QmXXGKJTKPmFQ5n6fSHGk9TwKbGeEzVT/ri3N/2qDxISXfspEnBgqyGpRmHBkJFp+HY2ZosTwuQVMFLO3IjLFChNjAyplITQzoRU06jk0va8QurWqV69e3NQrrXoeRxFO4BTOwYMGtOAa2tABAnfwAE/w7Ejn0XlxXletBSefOYYfct4+AU3zj1I=</latexit>

x0
1

<latexit sha1_base64="3uWHSs/p07k2sqZ/+0Nwxyy3hsE=">AAAB63icbZDLSsNAFIZP6q3WW9Wlm8EiuiqJRGp3BTcuK9gLtKFMppN26MwkzEzEEvoKblwo4tYXcufbmKRBvP0w8PGfczhnfj/iTBvb/rBKK6tr6xvlzcrW9s7uXnX/oKvDWBHaISEPVd/HmnImaccww2k/UhQLn9OeP7vK6r07qjQL5a2ZR9QTeCJZwAg2mXV/OnJG1Zpdt3Ohv+AUUINC7VH1fTgOSSyoNIRjrQeOHRkvwcowwumiMow1jTCZ4QkdpCixoNpL8lsX6CR1xigIVfqkQbn7fSLBQuu58NNOgc1U/65l5n+1QWyCSy9hMooNlWS5KIg5MiHKPo7GTFFi+DwFTBRLb0VkihUmJo2nkofQzIWW0HALaDpfIXTP645bv7hxay23iKMMR3AMZ+BAA1pwDW3oAIEpPMATPFvCerRerNdla8kqZg7hh6y3T6jSjls=</latexit>

x0
2

<latexit sha1_base64="0NqQkjGLfHR3yQgJQH1UYyZo66Q=">AAAB63icbZDLSsNAFIZP6q3WW9Wlm8EiuipJidTuCm5cVrC10IYymU7aoTOTMDMRS+gruHGhiFtfyJ1vY5IG8fbDwMd/zuGc+f2IM21s+8MqrayurW+UNytb2zu7e9X9g54OY0Vol4Q8VH0fa8qZpF3DDKf9SFEsfE5v/dllVr+9o0qzUN6YeUQ9gSeSBYxgk1n3p6PGqFqz63Yu9BecAmpQqDOqvg/HIYkFlYZwrPXAsSPjJVgZRjhdVIaxphEmMzyhgxQlFlR7SX7rAp2kzhgFoUqfNCh3v08kWGg9F37aKbCZ6t+1zPyvNohNcOElTEaxoZIsFwUxRyZE2cfRmClKDJ+ngIli6a2ITLHCxKTxVPIQWrnQEppuAS3nK4Reo+649fNrt9Z2izjKcATHcAYONKENV9CBLhCYwgM8wbMlrEfrxXpdtpasYuYQfsh6+wSqVo5c</latexit>

W 0
11

<latexit sha1_base64="QOZx8aZ1vw5R/dHOqF7zmifvPXA=">AAAB7nicbZDLSsNAFIZP6q3WW9Wlm8EiuiqJpNTuCm5cVrBNoQ1lMp20QyeTMDMRSuhDuHGhiFufx51v4zQN4u2HgY//nMM58wcJZ0rb9odVWlvf2Nwqb1d2dvf2D6qHRz0Vp5LQLol5LPsBVpQzQbuaaU77iaQ4Cjj1gtn1su7dU6lYLO70PKF+hCeChYxgbSzPOx9ljrMYVWt23c6F/oJTQA0KdUbV9+E4JmlEhSYcKzVw7ET7GZaaEU4XlWGqaILJDE/owKDAEVV+lp+7QGfGGaMwluYJjXL3+0SGI6XmUWA6I6yn6ndtaf5XG6Q6vPIzJpJUU0FWi8KUIx2j5d/RmElKNJ8bwEQycysiUywx0SahSh5CKxdaQdMtoOV8hdC7rDtuvXHr1tpuEUcZTuAULsCBJrThBjrQBQIzeIAneLYS69F6sV5XrSWrmDmGH7LePgGsDI+B</latexit>

W 0
12

<latexit sha1_base64="boEIKNiodGNN6o/FPVKNyZn9tzU=">AAAB7nicbZDLSsNAFIZP6q3WW9Wlm8EiuipJidTuCm5cVrBNoQ1lMp20QyeTMDMRSuhDuHGhiFufx51v4zQN4u2HgY//nMM58wcJZ0rb9odVWlvf2Nwqb1d2dvf2D6qHRz0Vp5LQLol5LPsBVpQzQbuaaU77iaQ4Cjj1gtn1su7dU6lYLO70PKF+hCeChYxgbSzPOx9lTmMxqtbsup0L/QWngBoU6oyq78NxTNKICk04Vmrg2In2Myw1I5wuKsNU0QSTGZ7QgUGBI6r8LD93gc6MM0ZhLM0TGuXu94kMR0rNo8B0RlhP1e/a0vyvNkh1eOVnTCSppoKsFoUpRzpGy7+jMZOUaD43gIlk5lZEplhiok1ClTyEVi60gqZbQMv5CqHXqDtu/fLWrbXdIo4ynMApXIADTWjDDXSgCwRm8ABP8Gwl1qP1Yr2uWktWMXMMP2S9fQKtkY+C</latexit>

ŷ

<latexit sha1_base64="ajjEjIVQi9ucUlChtVotu0C8zR8=">AAAB7nicbZDJSgNBEIZr4hbjFvXopTEInsKMRGJuAS8eI5gFkiH0dHqSJj0L3TXCMOQhvHhQxKvP4823sTMZxO2Hho+/qqjq34ul0GjbH1ZpbX1jc6u8XdnZ3ds/qB4e9XSUKMa7LJKRGnhUcylC3kWBkg9ixWngSd735tfLev+eKy2i8A7TmLsBnYbCF4yisfqjGcUsXYyrNbtu5yJ/wSmgBoU64+r7aBKxJOAhMkm1Hjp2jG5GFQom+aIySjSPKZvTKR8aDGnAtZvl5y7ImXEmxI+UeSGS3P0+kdFA6zTwTGdAcaZ/15bmf7Vhgv6Vm4kwTpCHbLXITyTBiCz/TiZCcYYyNUCZEuZWwmZUUYYmoUoeQisXWUGzUUDL+Qqhd1F3GvXL20at3SjiKMMJnMI5ONCENtxAB7rAYA4P8ATPVmw9Wi/W66q1ZBUzx/BD1tsn7hmQVA==</latexit>
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General Strategy

✓⇤ = argmin✓ Ex⇠p(x) [L(f✓(x),x)]

<latexit sha1_base64="gPsOsfABelz1DcyBQdAIwNz5wjY="></latexit>

Loss function L X
Neural network f✓ X

Parameters ✓ X
Opt. Parameters ✓⇤

Data x

Data distribution p(x)

<latexit sha1_base64="T6ybp3cfCUt4frsmFMesA3zvKHE=">AAADA3icdVLLbtNAFB2bVwmPprBCbEZEoMIislFQqbypgAWLCoJE2kqZEI0n183I47E1DyCyLLHhV9iwACG2/AQ7/oaxY0haypUsHd9zju6dMxMXgmsTBL88/9z5CxcvbVzuXLl67fpmd+vGgc6tYjBiucjVUUw1CC5hZLgRcFQooFks4DBOn9b84VtQmufytVkUMMnoseQJZ9S41nTLu0UyauYqK/dzrUmUWMlqpsIkuocbjl FR7tf/mLA5sDSjKiWk88f3AqyigkQSzLtcpUtjMi2JmYOh1f9sQ6poBsat1o5q5Cen4DX9y8L0SXS2682DdeUz6sau1o+T8n11mifRzGWreGxXhy22V/r7zjDt9oJ+0BT+F4Qt6KG2htPuTzLLmc1AGiao1uMwKMykpMpwJqDqEKuhoCylxzB2ULqT6EnZ3GGF77rODCe5cp80uOmuO0qaab3IYqest9Snubp5Fje2Jnk8KbksrAHJloMSK7DJcf0g8IwrYEYsHKBMcbcrZnMXM6tT7jQh7DaFl2Bn0ILd8G8IBw/74aD/6NWgt/ekjWMD3UZ30DYK0Q7aQ8/REI0Q8z54n7wv3lf/o//Z/+Z/X0p9r/XcRCfK//Ebjen0pg==</latexit>

• Define an optimisation target (loss function)


• Choose a non-linear, expressive, parametrised 
function (e.g. a neural network)


• Use training data to optimise parameters, then 
apply to new examples



• Backpropagation + Gradient descent 

• Important: Loss function needs to be differentiable


• (Or find a differentiable approximation)


• Pass input (x1, x2, …) to networks


• From output calculate loss function 
Find gradient of loss function with respect to weights 


• Use gradient to find new weights

26

Learning rate

• In practice, handled by optimise algorithm (e.g. Adam) 

✓t+1 = ✓t � ⌘
@L
@✓t

= ✓t � ⌘rL

<latexit sha1_base64="zuf5e1/X7T03c+wV/vhd0FMWABs="></latexit>

How do networks learn?
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How do networks learn?

- -
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29



30

Adam

https://arxiv.org/abs/1412.6980

Maintain history of previous changes: 
momentum 
Exponential moving average of  
gradient and gradient squares 
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32



33



34
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Side note: Overfitting

• Recent observation in computer science


• Extremely high capacity does not guarantee 
overfitting


• Even more recent:


• Grokking: Sudden generalisation 
of a trained model


• Active research into foundations, 
does not stop us from using it

Reconciling modern machine-learning 
practice and the classical bias–
variance trade-off (PNAS, Belkin et al) 
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General Strategy

✓⇤ = argmin✓ Ex⇠p(x) [L(f✓(x),x)]

<latexit sha1_base64="gPsOsfABelz1DcyBQdAIwNz5wjY="></latexit>

Loss function L X
Neural network f✓X

Parameters ✓X
Opt. Parameters ✓⇤X

Data x

Data distribution p(x)

<latexit sha1_base64="60KG4ldAemcQy5izPAKhpKjcQwo="></latexit>
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High-level/no structure:  
Fully Connected

Data Representation
Regular grid: Convolution

Sequence/Time Series: Recurrent Point cloud: Sets & Graphs
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General Strategy

✓⇤ = argmin✓ Ex⇠p(x) [L(f✓(x),x)]

<latexit sha1_base64="gPsOsfABelz1DcyBQdAIwNz5wjY="></latexit>

Loss function L X
Neural network f✓ X

Parameters ✓ X
Opt. Parameters ✓⇤ X

Data x X
Data distribution p(x) X

<latexit sha1_base64="weGwVNIUBf7yZQEYuhxdquUoTwU=">AAADLXicfVJNb9QwEHXCV1m+tnDkYrECFQ6rpFpUqlwqyoFDBYvEtpXWy8rxOl0rthPZE2AV5Q9x4a8gJA5FiCt/Aycb2Ja2jGTped48zfiN41wKC0Fw7PmXLl+5em3teufGzVu373TX7+7brDCMj1gmM3MYU8ul0HwEAiQ/zA2nKpb8IE53a/7gPTdWZPotLHI+UfRIi0QwCi41Xfd2iaIwN6rcy6wlUVJoVjMVJtEj3HCMyn KvvmPC5pylipqUkM4f3SteGCpJpDl8yEy6FCbTksCcA60ukg2poYqDG61t1ZSf7oJP1L/OoU+i81Xvnlyse0HdEKvHxEn5sfp/NYlmzncj4mJlRL6xUj8+I592e0E/aAKfBWELeqiN4bT7lcwyViiugUlq7TgMcpiU1IBgklcdUlieU5bSIz52ULs320nZbLvCD11mhpPMuKMBN9mTipIqaxcqdpX1zPZfrk6ex40LSJ5NSqHzArhmy0ZJITFkuP46eCYMZyAXDlBmhJsVs7lbCKv30WlM2G4CL8HWoAXb4V8T9jf74aD/9M2gt/O8tWMN3UcP0AYK0RbaQS/REI0Q8z55X7xj77v/2f/m//B/Lkt9r9XcQ6fC//UbxkgE7Q==</latexit>
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Summary so far

• Key idea of deep learning:


• Define a optimisation target and use an expressive function 
(neural network) to minimise it using gradient descent


• Let’s look at a typical problem in particle physics…



A jet is a 
collimated shower of particles in the detector

Jet Tagging



top 
quark jet?

gluon jet?

bottom 
quark jet?

light quark  
jet?

We want to know 
which particle produced a jet



top 
quark jet?

bottom 
quark jet?

How to build ML algorithms for complex, heterogenous data?

gluon jet?

light quark  
jet?



top 
quark jet?

bottom 
quark jet?

gluon jet?

light quark  
jet?Data most naturally viewed 

as point cloud:


Each input (e.g. jet, event, ..)  
is a set of k-dimensional vectors  
(individual particles, hits, ..)

1810.05165; GK et al 2312.00123
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Flow Matching Beyond Kinematics: Generating Jets with Particle-ID and
Trajectory Displacement Information
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We introduce the first generative model trained on the JetClass dataset. Our model generates
jets at the constituent level, and it is a permutation-equivariant continuous normalizing flow (CNF)
trained with the flow matching technique. It is conditioned on the jet type, so that a single model can
be used to generate the ten di↵erent jet types of JetClass. For the first time, we also introduce a
generative model that goes beyond the kinematic features of jet constituents. The JetClass dataset
includes more features, such as particle-ID and track impact parameter, and we demonstrate that
our CNF can accurately model all of these additional features as well. Our generative model for
JetClass expands on the versatility of existing jet generation techniques, enhancing their potential
utility in high-energy physics research, and o↵ering a more comprehensive understanding of the
generated jets.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia [1] and Herwig [2] is not
a major computational bottleneck at the LHC [3],
learning the properties of jets from data still has in-
teresting potential applications. For example, gen-
erative modeling at the jet constituent level can be
used to improve the performance of anomaly detec-
tion [4] techniques.

More generally, learning jets is an interesting lab-
oratory for method development. In particular, it
has been fruitful and e↵ective to view the jet con-
stituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [5–14], that combine
di↵erent permutation-invariant layers such as trans-
formers [15] and the EPiC layer [7], with state-
of-the-art generative modeling frameworks such as
di↵usion [16–20] and flow matching [21–24]. Suc-
cessful models developed for jet point clouds can
also potentially be adapted to other important point
cloud generative modeling problems such as for fast
emulation of GEANT4 [25–27] calorimeter show-
ers [11, 13, 28, 29]. Finally, while event generation
with generative models has concentrated primarily
on low multiplicities and fixed structures [30–35], re-
cent, in-principle permutation invariant, approaches
exist as well [36, 37].

So far, e↵orts for jet generation have focused al-
most exclusively on the JetNet dataset of Refs. [38,
39]. Originally generated by [40], this dataset was
subsequently adopted in the works of Ref. [5] as

⇤
joschka.birk@uni-hamburg.de

electron

charged hadron

muon
Kinematics : 
pT, �, �

Particle-ID and charge : 
isElectron, isMuon, …

Trajectory displacement : 
 : closest approach to PV in -plane

 :  position where  is evaluated 

d0 xy
dz z d0

FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

a benchmark dataset for jet generative modeling.
However, the JetNet dataset has a number of draw-
backs that are readily becoming apparent. First, its
limited size (180k jets per jet type) means there are
not enough jets in JetNet to facilitate the train-
ing of state-of-the-art generative models as well as
metrics such as the binary classifier metric [41, 42]
which require additional training data. Second, Jet-
Net uses small-radius (R = 0.4) jets (although the
description in [5] incorrectly states a cone-size of
R = 0.8 which is in disagreement with the observed
angular distribution of constituents). This can lead
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Example

per-particle 

features



L-GATr TAGGING

Impact of pre-training

H. Qu et al., 2202,03772

Top Quark Tagging
Public simulated*  
benchmark dataset

* techniques are also 
applied to collider dataGK, Plehn, et al 1902.09914



Landscape Dataset
• Open dataset for the development 

of better tagging algorithms for 
particle physics 

• 2 million simulated examples 

• Input: momentum sorted list of 200 
particles/jet with 3 features/particle 
(pX, pY, pZ)


• Perfect class labels: 
top jet or light quark/gluon jet 

• Supervised learning problem

 

GK, Plehn, et al 1902.09914



L-GATr TAGGING

Impact of pre-training

H. Qu et al., 2202,03772

Top Quark Tagging

(*Subset of methods, graph from 
V Breso at ML4Jets)



L-GATr TAGGING

Impact of pre-training

H. Qu et al., 2202,03772

Top Quark Tagging

(a) Full GN block

u�,u�
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V, Vhid
<latexit sha1_base64="brwuxF74R6OEOykh378as/RBfzE=">AAAB+nicbVBNS8NAFHzxs9avVI9eFovgQUoigh48FLx4rGDTQhvCZrNtl+4mYXejlNif4sWDIl79Jd78N27aHLR1YGGYeY83O2HKmdKO822trK6tb2xWtqrbO7t7+3btwFNJJgltk4QnshtiRTmLaVszzWk3lRSLkNNOOL4p/M4DlYol8b2epNQXeBizASNYGymwa94Z8oK+wHokRT5i0TSw607DmQEtE7ckdSjRCuyvfpSQTNBYE46V6rlOqv0cS80Ip9NqP1M0xWSMh7RnaIwFVX4+iz5FJ0aJ0CCR5sUazdTfGzkWSk1EaCaLjGrRK8T/vF6mB1d+zuI00zQm80ODjCOdoKIHFDFJieYTQzCRzGRFZIQlJtq0VTUluItfXibeecN1Gu7dRb15XdZRgSM4hlNw4RKacAstaAOBR3iGV3iznqwX6936mI+uWOXOIfyB9fkD20qTuA==</latexit><latexit sha1_base64="brwuxF74R6OEOykh378as/RBfzE=">AAAB+nicbVBNS8NAFHzxs9avVI9eFovgQUoigh48FLx4rGDTQhvCZrNtl+4mYXejlNif4sWDIl79Jd78N27aHLR1YGGYeY83O2HKmdKO822trK6tb2xWtqrbO7t7+3btwFNJJgltk4QnshtiRTmLaVszzWk3lRSLkNNOOL4p/M4DlYol8b2epNQXeBizASNYGymwa94Z8oK+wHokRT5i0TSw607DmQEtE7ckdSjRCuyvfpSQTNBYE46V6rlOqv0cS80Ip9NqP1M0xWSMh7RnaIwFVX4+iz5FJ0aJ0CCR5sUazdTfGzkWSk1EaCaLjGrRK8T/vF6mB1d+zuI00zQm80ODjCOdoKIHFDFJieYTQzCRzGRFZIQlJtq0VTUluItfXibeecN1Gu7dRb15XdZRgSM4hlNw4RKacAstaAOBR3iGV3iznqwX6936mI+uWOXOIfyB9fkD20qTuA==</latexit><latexit sha1_base64="brwuxF74R6OEOykh378as/RBfzE=">AAAB+nicbVBNS8NAFHzxs9avVI9eFovgQUoigh48FLx4rGDTQhvCZrNtl+4mYXejlNif4sWDIl79Jd78N27aHLR1YGGYeY83O2HKmdKO822trK6tb2xWtqrbO7t7+3btwFNJJgltk4QnshtiRTmLaVszzWk3lRSLkNNOOL4p/M4DlYol8b2epNQXeBizASNYGymwa94Z8oK+wHokRT5i0TSw607DmQEtE7ckdSjRCuyvfpSQTNBYE46V6rlOqv0cS80Ip9NqP1M0xWSMh7RnaIwFVX4+iz5FJ0aJ0CCR5sUazdTfGzkWSk1EaCaLjGrRK8T/vF6mB1d+zuI00zQm80ODjCOdoKIHFDFJieYTQzCRzGRFZIQlJtq0VTUluItfXibeecN1Gu7dRb15XdZRgSM4hlNw4RKacAstaAOBR3iGV3iznqwX6936mI+uWOXOIfyB9fkD20qTuA==</latexit><latexit sha1_base64="brwuxF74R6OEOykh378as/RBfzE=">AAAB+nicbVBNS8NAFHzxs9avVI9eFovgQUoigh48FLx4rGDTQhvCZrNtl+4mYXejlNif4sWDIl79Jd78N27aHLR1YGGYeY83O2HKmdKO822trK6tb2xWtqrbO7t7+3btwFNJJgltk4QnshtiRTmLaVszzWk3lRSLkNNOOL4p/M4DlYol8b2epNQXeBizASNYGymwa94Z8oK+wHokRT5i0TSw607DmQEtE7ckdSjRCuyvfpSQTNBYE46V6rlOqv0cS80Ip9NqP1M0xWSMh7RnaIwFVX4+iz5FJ0aJ0CCR5sUazdTfGzkWSk1EaCaLjGrRK8T/vF6mB1d+zuI00zQm80ODjCOdoKIHFDFJieYTQzCRzGRFZIQlJtq0VTUluItfXibeecN1Gu7dRb15XdZRgSM4hlNw4RKacAstaAOBR3iGV3iznqwX6936mI+uWOXOIfyB9fkD20qTuA==</latexit>

u,uhid
<latexit sha1_base64="UO6spgXZarocGO1zBKohmEwCj+c=">AAACDHicbZDNSsNAFIVv6l+tf1WXbgaL4EJKIoIuXBTcuKxgW6ENZTKZtENnkjAzEUrIA7jxVdy4UMStD+DOt3GSBtTWAwMf597L3Hu8mDOlbfvLqiwtr6yuVddrG5tb2zv13b2uihJJaIdEPJJ3HlaUs5B2NNOc3sWSYuFx2vMmV3m9d0+lYlF4q6cxdQUehSxgBGtjDeuNgcB67AVpkp2gHx4WKEU6Zn5muuymXQgtglNCA0q1h/XPgR+RRNBQE46V6jt2rN0US80Ip1ltkCgaYzLBI9o3GGJBlZsWx2ToyDg+CiJpXqhR4f6eSLFQaio805nvqOZruflfrZ/o4MJNWRgnmoZk9lGQcKQjlCeDfCYp0XxqABPJzK6IjLHERJv8aiYEZ/7kReieNh276dycNVqXZRxVOIBDOAYHzqEF19CGDhB4gCd4gVfr0Xq23qz3WWvFKmf24Y+sj28GGpw2</latexit><latexit sha1_base64="UO6spgXZarocGO1zBKohmEwCj+c=">AAACDHicbZDNSsNAFIVv6l+tf1WXbgaL4EJKIoIuXBTcuKxgW6ENZTKZtENnkjAzEUrIA7jxVdy4UMStD+DOt3GSBtTWAwMf597L3Hu8mDOlbfvLqiwtr6yuVddrG5tb2zv13b2uihJJaIdEPJJ3HlaUs5B2NNOc3sWSYuFx2vMmV3m9d0+lYlF4q6cxdQUehSxgBGtjDeuNgcB67AVpkp2gHx4WKEU6Zn5muuymXQgtglNCA0q1h/XPgR+RRNBQE46V6jt2rN0US80Ip1ltkCgaYzLBI9o3GGJBlZsWx2ToyDg+CiJpXqhR4f6eSLFQaio805nvqOZruflfrZ/o4MJNWRgnmoZk9lGQcKQjlCeDfCYp0XxqABPJzK6IjLHERJv8aiYEZ/7kReieNh276dycNVqXZRxVOIBDOAYHzqEF19CGDhB4gCd4gVfr0Xq23qz3WWvFKmf24Y+sj28GGpw2</latexit><latexit sha1_base64="UO6spgXZarocGO1zBKohmEwCj+c=">AAACDHicbZDNSsNAFIVv6l+tf1WXbgaL4EJKIoIuXBTcuKxgW6ENZTKZtENnkjAzEUrIA7jxVdy4UMStD+DOt3GSBtTWAwMf597L3Hu8mDOlbfvLqiwtr6yuVddrG5tb2zv13b2uihJJaIdEPJJ3HlaUs5B2NNOc3sWSYuFx2vMmV3m9d0+lYlF4q6cxdQUehSxgBGtjDeuNgcB67AVpkp2gHx4WKEU6Zn5muuymXQgtglNCA0q1h/XPgR+RRNBQE46V6jt2rN0US80Ip1ltkCgaYzLBI9o3GGJBlZsWx2ToyDg+CiJpXqhR4f6eSLFQaio805nvqOZruflfrZ/o4MJNWRgnmoZk9lGQcKQjlCeDfCYp0XxqABPJzK6IjLHERJv8aiYEZ/7kReieNh276dycNVqXZRxVOIBDOAYHzqEF19CGDhB4gCd4gVfr0Xq23qz3WWvFKmf24Y+sj28GGpw2</latexit><latexit sha1_base64="UO6spgXZarocGO1zBKohmEwCj+c=">AAACDHicbZDNSsNAFIVv6l+tf1WXbgaL4EJKIoIuXBTcuKxgW6ENZTKZtENnkjAzEUrIA7jxVdy4UMStD+DOt3GSBtTWAwMf597L3Hu8mDOlbfvLqiwtr6yuVddrG5tb2zv13b2uihJJaIdEPJJ3HlaUs5B2NNOc3sWSYuFx2vMmV3m9d0+lYlF4q6cxdQUehSxgBGtjDeuNgcB67AVpkp2gHx4WKEU6Zn5muuymXQgtglNCA0q1h/XPgR+RRNBQE46V6jt2rN0US80Ip1ltkCgaYzLBI9o3GGJBlZsWx2ToyDg+CiJpXqhR4f6eSLFQaio805nvqOZruflfrZ/o4MJNWRgnmoZk9lGQcKQjlCeDfCYp0XxqABPJzK6IjLHERJv8aiYEZ/7kReieNh276dycNVqXZRxVOIBDOAYHzqEF19CGDhB4gCd4gVfr0Xq23qz3WWvFKmf24Y+sj28GGpw2</latexit>

Edge block Node block Global block

�u
<latexit sha1_base64="znt8hwWv6wryqwCugrweUa+jkM8=">AAAB7XicbVA9SwNBEJ3zM8avqGBjsxgEq3Bno4VFwMYygrkEkjPubfaSNXu7y+6eEo78BxsLRWz9P3b+GzcfhSY+GHi8N8PMvFhxZqzvf3tLyyura+uFjeLm1vbObmlvPzQy04TWieRSN2NsKGeC1i2znDaVpjiNOW3Eg6ux33ik2jApbu1Q0SjFPcESRrB1UthWfXaXdUplv+JPgBZJMCPl6mH4dA8AtU7pq92VJEupsIRjY1qBr2yUY20Z4XRUbGeGKkwGuEdbjgqcUhPlk2tH6MQpXZRI7UpYNFF/T+Q4NWaYxq4zxbZv5r2x+J/XymxyEeVMqMxSQaaLkowjK9H4ddRlmhLLh45gopm7FZE+1phYF1DRhRDMv7xIwrNK4FeCG5fGJUxRgCM4hlMI4ByqcA01qAOBB3iGV3jzpPfivXsf09YlbzZzAH/gff4AqE6Qnw==</latexit><latexit sha1_base64="Nc0DXje6uYB+/0fHlXL99yCq0no=">AAAB7XicbVC7SgNBFL0bXzG+ooKNzWAQrMKujRYWARvLCGYTSNYwO5lNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kitAGSXiiWiHWlDNBG4YZTltSURyHnDbD4eXYb95TpVkibkwmaRDjvmARI9hYye/IAbtNu+WKW3UnQIvEm5FK7cB/kNn3e71b/uz0EpLGVBjCsdZtz5UmyLEyjHA6KnVSTSUmQ9ynbUsFjqkO8sm1I3RslR6KEmVLGDRRf0/kONY6i0PbGWMz0PPeWPzPa6cmOg9yJmRqqCDTRVHKkUnQ+HXUY4oSwzNLMFHM3orIACtMjA2oZEPw5l9eJP5p1XOr3rVN4wKmKMIhHMEJeHAGNbiCOjSAwB08wjO8OInz5Lw6b9PWgjOb2Yc/cD5+AGXTkqw=</latexit><latexit sha1_base64="Nc0DXje6uYB+/0fHlXL99yCq0no=">AAAB7XicbVC7SgNBFL0bXzG+ooKNzWAQrMKujRYWARvLCGYTSNYwO5lNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kitAGSXiiWiHWlDNBG4YZTltSURyHnDbD4eXYb95TpVkibkwmaRDjvmARI9hYye/IAbtNu+WKW3UnQIvEm5FK7cB/kNn3e71b/uz0EpLGVBjCsdZtz5UmyLEyjHA6KnVSTSUmQ9ynbUsFjqkO8sm1I3RslR6KEmVLGDRRf0/kONY6i0PbGWMz0PPeWPzPa6cmOg9yJmRqqCDTRVHKkUnQ+HXUY4oSwzNLMFHM3orIACtMjA2oZEPw5l9eJP5p1XOr3rVN4wKmKMIhHMEJeHAGNbiCOjSAwB08wjO8OInz5Lw6b9PWgjOb2Yc/cD5+AGXTkqw=</latexit><latexit sha1_base64="S5XnA5iYIAgqxiI+i0ptSwAiKP4=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5stLAI2FhGMB+QnGFvM5es2ds9dveEEPIfbCwUsfX/2Plv3CRXaOKDgcd7M8zMi1LBjfX9b6+wtr6xuVXcLu3s7u0flA+PmkZlmmGDKaF0O6IGBZfYsNwKbKcaaRIJbEWjm5nfekJtuJL3dpximNCB5DFn1Dqp2U2H/CHrlSt+1Z+DrJIgJxXIUe+Vv7p9xbIEpWWCGtMJ/NSGE6otZwKnpW5mMKVsRAfYcVTSBE04mV87JWdO6ZNYaVfSkrn6e2JCE2PGSeQ6E2qHZtmbif95nczGV+GEyzSzKNliUZwJYhWZvU76XCOzYuwIZZq7WwkbUk2ZdQGVXAjB8surpHlRDfxqcOdXatd5HEU4gVM4hwAuoQa3UIcGMHiEZ3iFN095L96797FoLXj5zDH8gff5A53Djxw=</latexit>

<latexit sha1_base64="m8MJ1M94ujO0d0COo5n2Dsol6rc=">AAAB53icbVC7SgNBFL0bXzG+opY2g0GwCrs2phAM2FhGMA9IFpmdvZsMmZ1dZmaFsKS0sbFQxNZP8Rfs/AZ/wsmj0MQDFw7nnMt9BKng2rjul1NYWV1b3yhulra2d3b3yvsHLZ1kimGTJSJRnYBqFFxi03AjsJMqpHEgsB0MryZ++x6V5om8NaMU/Zj2JY84o8ZKjbtyxa26U5Bl4s1J5fLj+4EAgM1/9sKEZTFKwwTVuuu5qfFzqgxnAselXqYxpWxI+9i1VNIYtZ9P9xyTE6uEJEqULWnIVP3dkdNY61Ec2GRMzUAvehPxP6+bmajm51ymmUHJZoOiTBCTkMnRJOQKmREjSyhT3O5K2IAqyox9Tck+wVs8eZm0zqqeW/Vu3Er9AmYowhEcwyl4cA51uIYGNIFBCI/wDC8Od56cV+dtFi04855D+APn/Qd/sI8A</latexit><latexit sha1_base64="q1zM5ZsCNMJAtNUZI97B98ATlaA=">AAAB53icbVC7SgNBFL3rM8ZX1FKQwSBYhV0bLQQDNpYJmAckQWZn7yZDZmeXmVkhLCltbCwUsfUvbP0FO79BP8LJo9DEAxcO55zLffiJ4Nq47qezsLi0vLKaW8uvb2xubRd2dus6ThXDGotFrJo+1Si4xJrhRmAzUUgjX2DD71+O/MYtKs1jeW0GCXYi2pU85IwaK1VuCkW35I5B5ok3JcWL96+7g7fqt81/tIOYpRFKwwTVuuW5ielkVBnOBA7z7VRjQlmfdrFlqaQR6k423nNIjqwSkDBWtqQhY/V3R0YjrQeRb5MRNT09643E/7xWasKzTsZlkhqUbDIoTAUxMRkdTQKukBkxsIQyxe2uhPWooszY1+TtE7zZk+dJ/aTkuSWv6hbL5zBBDvbhEI7Bg1MowxVUoAYMAriHR3hyuPPgPDsvk+iCM+3Zgz9wXn8AGkeQ8w==</latexit><latexit sha1_base64="q1zM5ZsCNMJAtNUZI97B98ATlaA=">AAAB53icbVC7SgNBFL3rM8ZX1FKQwSBYhV0bLQQDNpYJmAckQWZn7yZDZmeXmVkhLCltbCwUsfUvbP0FO79BP8LJo9DEAxcO55zLffiJ4Nq47qezsLi0vLKaW8uvb2xubRd2dus6ThXDGotFrJo+1Si4xJrhRmAzUUgjX2DD71+O/MYtKs1jeW0GCXYi2pU85IwaK1VuCkW35I5B5ok3JcWL96+7g7fqt81/tIOYpRFKwwTVuuW5ielkVBnOBA7z7VRjQlmfdrFlqaQR6k423nNIjqwSkDBWtqQhY/V3R0YjrQeRb5MRNT09643E/7xWasKzTsZlkhqUbDIoTAUxMRkdTQKukBkxsIQyxe2uhPWooszY1+TtE7zZk+dJ/aTkuSWv6hbL5zBBDvbhEI7Bg1MowxVUoAYMAriHR3hyuPPgPDsvk+iCM+3Zgz9wXn8AGkeQ8w==</latexit><latexit sha1_base64="ioxb3woZF1oAlTScqds23PrgiMY=">AAAB53icbVC7SgNBFL3rM8ZX1NJmMAhWYdZGC4uAjWUE84BkkdnZ2WTI7Owyc1cIS37AxkIRW3/Jzr9xkmyhiQcGDuecy9x7wkxJi5R+e2vrG5tb25Wd6u7e/sFh7ei4Y9PccNHmqUpNL2RWKKlFGyUq0cuMYEmoRDcc38787pMwVqb6ASeZCBI21DKWnKGTWo+1Om3QOcgq8UtShxIu/zWIUp4nQiNXzNq+TzMMCmZQciWm1UFuRcb4mA1F31HNEmGDYr7nlJw7JSJxatzTSObq74mCJdZOktAlE4Yju+zNxP+8fo7xdVBIneUoNF98FOeKYEpmR5NIGsFRTRxh3Ei3K+EjZhhHV03VleAvn7xKOpcNnzb8e1pv3pR1VOAUzuACfLiCJtxBC9rAIYJneIU3T3ov3rv3sYiueeXMCfyB9/kDCGmMcA==</latexit>

�v
<latexit sha1_base64="HCiXjOq04H3f4Ed7vqyiRfd+2dI=">AAAB7XicbVA9SwNBEJ2LXzF+nQo2NotBsAp3NlpYBGwsI5hLIDnj3mYvWbO3e+zuRcKR/2BjoYit/8fOf+Pmo9DEBwOP92aYmRelnGnjed9OYWV1bX2juFna2t7Z3XP3DwItM0VonUguVTPCmnImaN0ww2kzVRQnEaeNaHA98RtDqjST4s6MUhomuCdYzAg2VgraaZ/dDztu2at4U6Bl4s9JuXoUPD0AQK3jfrW7kmQJFYZwrHXL91IT5lgZRjgdl9qZpikmA9yjLUsFTqgO8+m1Y3RqlS6KpbIlDJqqvydynGg9SiLbmWDT14veRPzPa2UmvgxzJtLMUEFmi+KMIyPR5HXUZYoSw0eWYKKYvRWRPlaYGBtQyYbgL768TILziu9V/FubxhXMUIRjOIEz8OECqnADNagDgUd4hld4c6Tz4rw7H7PWgjOfOYQ/cD5/AKnSkKA=</latexit><latexit sha1_base64="/voSHBGyFE5xYPVKPYM/GTIarLQ=">AAAB7XicbVC7SgNBFL3rM8ZXVLCxWQyCVdi10cIiYGMZwWwCyRpmJ7PJmNmZYWY2siz5BxsLRbT0f+z8AP/DyaPQxAMXDufcy733RJJRbTzvy1laXlldWy9sFDe3tnd2S3v7gRapwqSOBROqGSFNGOWkbqhhpCkVQUnESCMaXI39xpAoTQW/NZkkYYJ6nMYUI2OloC379G7YKZW9ijeBu0j8GSlXD4MHmX2/1zqlz3ZX4DQh3GCGtG75njRhjpShmJFRsZ1qIhEeoB5pWcpRQnSYT64duSdW6bqxULa4cSfq74kcJVpnSWQ7E2T6et4bi/95rdTEF2FOuUwN4Xi6KE6Za4Q7ft3tUkWwYZklCCtqb3VxHymEjQ2oaEPw519eJMFZxfcq/o1N4xKmKMARHMMp+HAOVbiGGtQBwz08wjO8OMJ5cl6dt2nrkjObOYA/cD5+AGdXkq0=</latexit><latexit sha1_base64="/voSHBGyFE5xYPVKPYM/GTIarLQ=">AAAB7XicbVC7SgNBFL3rM8ZXVLCxWQyCVdi10cIiYGMZwWwCyRpmJ7PJmNmZYWY2siz5BxsLRbT0f+z8AP/DyaPQxAMXDufcy733RJJRbTzvy1laXlldWy9sFDe3tnd2S3v7gRapwqSOBROqGSFNGOWkbqhhpCkVQUnESCMaXI39xpAoTQW/NZkkYYJ6nMYUI2OloC379G7YKZW9ijeBu0j8GSlXD4MHmX2/1zqlz3ZX4DQh3GCGtG75njRhjpShmJFRsZ1qIhEeoB5pWcpRQnSYT64duSdW6bqxULa4cSfq74kcJVpnSWQ7E2T6et4bi/95rdTEF2FOuUwN4Xi6KE6Za4Q7ft3tUkWwYZklCCtqb3VxHymEjQ2oaEPw519eJMFZxfcq/o1N4xKmKMARHMMp+HAOVbiGGtQBwz08wjO8OMJ5cl6dt2nrkjObOYA/cD5+AGdXkq0=</latexit><latexit sha1_base64="Fc8T4ygtia14k1z/CDji4ezWDqY=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswp2NFhYBG8sI5gOSM+xtNsmavd1jdy4QjvwHGwtFbP0/dv4bN8kVmvhg4PHeDDPzokQKi77/7a2tb2xubRd2irt7+weHpaPjhtWpYbzOtNSmFVHLpVC8jgIlbyWG0ziSvBmNbmd+c8yNFVo94CThYUwHSvQFo+ikRicZisdxt1T2K/4cZJUEOSlDjlq39NXpaZbGXCGT1Np24CcYZtSgYJJPi53U8oSyER3wtqOKxtyG2fzaKTl3So/0tXGlkMzV3xMZja2dxJHrjCkO7bI3E//z2in2r8NMqCRFrthiUT+VBDWZvU56wnCGcuIIZUa4WwkbUkMZuoCKLoRg+eVV0risBH4luPfL1Zs8jgKcwhlcQABXUIU7qEEdGDzBM7zCm6e9F+/d+1i0rnn5zAn8gff5A59Hjx0=</latexit>

�e
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(b) Independent recurrent block

Edge block Node block Global block
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<latexit sha1_base64="m8MJ1M94ujO0d0COo5n2Dsol6rc=">AAAB53icbVC7SgNBFL0bXzG+opY2g0GwCrs2phAM2FhGMA9IFpmdvZsMmZ1dZmaFsKS0sbFQxNZP8Rfs/AZ/wsmj0MQDFw7nnMt9BKng2rjul1NYWV1b3yhulra2d3b3yvsHLZ1kimGTJSJRnYBqFFxi03AjsJMqpHEgsB0MryZ++x6V5om8NaMU/Zj2JY84o8ZKjbtyxa26U5Bl4s1J5fLj+4EAgM1/9sKEZTFKwwTVuuu5qfFzqgxnAselXqYxpWxI+9i1VNIYtZ9P9xyTE6uEJEqULWnIVP3dkdNY61Ec2GRMzUAvehPxP6+bmajm51ymmUHJZoOiTBCTkMnRJOQKmREjSyhT3O5K2IAqyox9Tck+wVs8eZm0zqqeW/Vu3Er9AmYowhEcwyl4cA51uIYGNIFBCI/wDC8Od56cV+dtFi04855D+APn/Qd/sI8A</latexit><latexit sha1_base64="q1zM5ZsCNMJAtNUZI97B98ATlaA=">AAAB53icbVC7SgNBFL3rM8ZX1FKQwSBYhV0bLQQDNpYJmAckQWZn7yZDZmeXmVkhLCltbCwUsfUvbP0FO79BP8LJo9DEAxcO55zLffiJ4Nq47qezsLi0vLKaW8uvb2xubRd2dus6ThXDGotFrJo+1Si4xJrhRmAzUUgjX2DD71+O/MYtKs1jeW0GCXYi2pU85IwaK1VuCkW35I5B5ok3JcWL96+7g7fqt81/tIOYpRFKwwTVuuW5ielkVBnOBA7z7VRjQlmfdrFlqaQR6k423nNIjqwSkDBWtqQhY/V3R0YjrQeRb5MRNT09643E/7xWasKzTsZlkhqUbDIoTAUxMRkdTQKukBkxsIQyxe2uhPWooszY1+TtE7zZk+dJ/aTkuSWv6hbL5zBBDvbhEI7Bg1MowxVUoAYMAriHR3hyuPPgPDsvk+iCM+3Zgz9wXn8AGkeQ8w==</latexit><latexit sha1_base64="q1zM5ZsCNMJAtNUZI97B98ATlaA=">AAAB53icbVC7SgNBFL3rM8ZX1FKQwSBYhV0bLQQDNpYJmAckQWZn7yZDZmeXmVkhLCltbCwUsfUvbP0FO79BP8LJo9DEAxcO55zLffiJ4Nq47qezsLi0vLKaW8uvb2xubRd2dus6ThXDGotFrJo+1Si4xJrhRmAzUUgjX2DD71+O/MYtKs1jeW0GCXYi2pU85IwaK1VuCkW35I5B5ok3JcWL96+7g7fqt81/tIOYpRFKwwTVuuW5ielkVBnOBA7z7VRjQlmfdrFlqaQR6k423nNIjqwSkDBWtqQhY/V3R0YjrQeRb5MRNT09643E/7xWasKzTsZlkhqUbDIoTAUxMRkdTQKukBkxsIQyxe2uhPWooszY1+TtE7zZk+dJ/aTkuSWv6hbL5zBBDvbhEI7Bg1MowxVUoAYMAriHR3hyuPPgPDsvk+iCM+3Zgz9wXn8AGkeQ8w==</latexit><latexit sha1_base64="ioxb3woZF1oAlTScqds23PrgiMY=">AAAB53icbVC7SgNBFL3rM8ZX1NJmMAhWYdZGC4uAjWUE84BkkdnZ2WTI7Owyc1cIS37AxkIRW3/Jzr9xkmyhiQcGDuecy9x7wkxJi5R+e2vrG5tb25Wd6u7e/sFh7ei4Y9PccNHmqUpNL2RWKKlFGyUq0cuMYEmoRDcc38787pMwVqb6ASeZCBI21DKWnKGTWo+1Om3QOcgq8UtShxIu/zWIUp4nQiNXzNq+TzMMCmZQciWm1UFuRcb4mA1F31HNEmGDYr7nlJw7JSJxatzTSObq74mCJdZOktAlE4Yju+zNxP+8fo7xdVBIneUoNF98FOeKYEpmR5NIGsFRTRxh3Ei3K+EjZhhHV03VleAvn7xKOpcNnzb8e1pv3pR1VOAUzuACfLiCJtxBC9rAIYJneIU3T3ov3rv3sYiueeXMCfyB9/kDCGmMcA==</latexit>

�v
<latexit sha1_base64="HCiXjOq04H3f4Ed7vqyiRfd+2dI=">AAAB7XicbVA9SwNBEJ2LXzF+nQo2NotBsAp3NlpYBGwsI5hLIDnj3mYvWbO3e+zuRcKR/2BjoYit/8fOf+Pmo9DEBwOP92aYmRelnGnjed9OYWV1bX2juFna2t7Z3XP3DwItM0VonUguVTPCmnImaN0ww2kzVRQnEaeNaHA98RtDqjST4s6MUhomuCdYzAg2VgraaZ/dDztu2at4U6Bl4s9JuXoUPD0AQK3jfrW7kmQJFYZwrHXL91IT5lgZRjgdl9qZpikmA9yjLUsFTqgO8+m1Y3RqlS6KpbIlDJqqvydynGg9SiLbmWDT14veRPzPa2UmvgxzJtLMUEFmi+KMIyPR5HXUZYoSw0eWYKKYvRWRPlaYGBtQyYbgL768TILziu9V/FubxhXMUIRjOIEz8OECqnADNagDgUd4hld4c6Tz4rw7H7PWgjOfOYQ/cD5/AKnSkKA=</latexit><latexit sha1_base64="/voSHBGyFE5xYPVKPYM/GTIarLQ=">AAAB7XicbVC7SgNBFL3rM8ZXVLCxWQyCVdi10cIiYGMZwWwCyRpmJ7PJmNmZYWY2siz5BxsLRbT0f+z8AP/DyaPQxAMXDufcy733RJJRbTzvy1laXlldWy9sFDe3tnd2S3v7gRapwqSOBROqGSFNGOWkbqhhpCkVQUnESCMaXI39xpAoTQW/NZkkYYJ6nMYUI2OloC379G7YKZW9ijeBu0j8GSlXD4MHmX2/1zqlz3ZX4DQh3GCGtG75njRhjpShmJFRsZ1qIhEeoB5pWcpRQnSYT64duSdW6bqxULa4cSfq74kcJVpnSWQ7E2T6et4bi/95rdTEF2FOuUwN4Xi6KE6Za4Q7ft3tUkWwYZklCCtqb3VxHymEjQ2oaEPw519eJMFZxfcq/o1N4xKmKMARHMMp+HAOVbiGGtQBwz08wjO8OMJ5cl6dt2nrkjObOYA/cD5+AGdXkq0=</latexit><latexit sha1_base64="/voSHBGyFE5xYPVKPYM/GTIarLQ=">AAAB7XicbVC7SgNBFL3rM8ZXVLCxWQyCVdi10cIiYGMZwWwCyRpmJ7PJmNmZYWY2siz5BxsLRbT0f+z8AP/DyaPQxAMXDufcy733RJJRbTzvy1laXlldWy9sFDe3tnd2S3v7gRapwqSOBROqGSFNGOWkbqhhpCkVQUnESCMaXI39xpAoTQW/NZkkYYJ6nMYUI2OloC379G7YKZW9ijeBu0j8GSlXD4MHmX2/1zqlz3ZX4DQh3GCGtG75njRhjpShmJFRsZ1qIhEeoB5pWcpRQnSYT64duSdW6bqxULa4cSfq74kcJVpnSWQ7E2T6et4bi/95rdTEF2FOuUwN4Xi6KE6Za4Q7ft3tUkWwYZklCCtqb3VxHymEjQ2oaEPw519eJMFZxfcq/o1N4xKmKMARHMMp+HAOVbiGGtQBwz08wjO8OMJ5cl6dt2nrkjObOYA/cD5+AGdXkq0=</latexit><latexit sha1_base64="Fc8T4ygtia14k1z/CDji4ezWDqY=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswp2NFhYBG8sI5gOSM+xtNsmavd1jdy4QjvwHGwtFbP0/dv4bN8kVmvhg4PHeDDPzokQKi77/7a2tb2xubRd2irt7+weHpaPjhtWpYbzOtNSmFVHLpVC8jgIlbyWG0ziSvBmNbmd+c8yNFVo94CThYUwHSvQFo+ikRicZisdxt1T2K/4cZJUEOSlDjlq39NXpaZbGXCGT1Np24CcYZtSgYJJPi53U8oSyER3wtqOKxtyG2fzaKTl3So/0tXGlkMzV3xMZja2dxJHrjCkO7bI3E//z2in2r8NMqCRFrthiUT+VBDWZvU56wnCGcuIIZUa4WwkbUkMZuoCKLoRg+eVV0risBH4luPfL1Zs8jgKcwhlcQABXUIU7qEEdGDzBM7zCm6e9F+/d+1i0rnn5zAn8gff5A59Hjx0=</latexit>

⇢e�v
<latexit sha1_base64="s3/Cw/iD/Ic9TAit26LWmPV1hK0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWznTRLN9mwu6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKVEJik0qeBCdgKigLMEmpppDp1UAokDDu1geDP12yOQionkXo9T8GMySFjIKNFG6tlHnozEQw6eZINIEynFIx5NenbVqTkz4GXiFqSKCjR69pfXFzSLIdGUE6W6rpNqPydSM8phUvEyBSmhQzKArqEJiUH5+ez8CT41Sh+HQppKNJ6pvydyEis1jgPTGRMdqUVvKv7ndTMdXvk5S9JMQ0Lni8KMYy3wNAvcZxKo5mNDCJXM3IppRCSh2iRWMSG4iy8vk9Z5zXVq7t1FtX5dxFFGx+gEnSEXXaI6ukUN1EQU5egZvaI368l6sd6tj3lrySpmDtEfWJ8/7hmWGA==</latexit><latexit sha1_base64="s3/Cw/iD/Ic9TAit26LWmPV1hK0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWznTRLN9mwu6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKVEJik0qeBCdgKigLMEmpppDp1UAokDDu1geDP12yOQionkXo9T8GMySFjIKNFG6tlHnozEQw6eZINIEynFIx5NenbVqTkz4GXiFqSKCjR69pfXFzSLIdGUE6W6rpNqPydSM8phUvEyBSmhQzKArqEJiUH5+ez8CT41Sh+HQppKNJ6pvydyEis1jgPTGRMdqUVvKv7ndTMdXvk5S9JMQ0Lni8KMYy3wNAvcZxKo5mNDCJXM3IppRCSh2iRWMSG4iy8vk9Z5zXVq7t1FtX5dxFFGx+gEnSEXXaI6ukUN1EQU5egZvaI368l6sd6tj3lrySpmDtEfWJ8/7hmWGA==</latexit><latexit sha1_base64="s3/Cw/iD/Ic9TAit26LWmPV1hK0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWznTRLN9mwu6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKVEJik0qeBCdgKigLMEmpppDp1UAokDDu1geDP12yOQionkXo9T8GMySFjIKNFG6tlHnozEQw6eZINIEynFIx5NenbVqTkz4GXiFqSKCjR69pfXFzSLIdGUE6W6rpNqPydSM8phUvEyBSmhQzKArqEJiUH5+ez8CT41Sh+HQppKNJ6pvydyEis1jgPTGRMdqUVvKv7ndTMdXvk5S9JMQ0Lni8KMYy3wNAvcZxKo5mNDCJXM3IppRCSh2iRWMSG4iy8vk9Z5zXVq7t1FtX5dxFFGx+gEnSEXXaI6ukUN1EQU5egZvaI368l6sd6tj3lrySpmDtEfWJ8/7hmWGA==</latexit><latexit sha1_base64="s3/Cw/iD/Ic9TAit26LWmPV1hK0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWznTRLN9mwu6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKVEJik0qeBCdgKigLMEmpppDp1UAokDDu1geDP12yOQionkXo9T8GMySFjIKNFG6tlHnozEQw6eZINIEynFIx5NenbVqTkz4GXiFqSKCjR69pfXFzSLIdGUE6W6rpNqPydSM8phUvEyBSmhQzKArqEJiUH5+ez8CT41Sh+HQppKNJ6pvydyEis1jgPTGRMdqUVvKv7ndTMdXvk5S9JMQ0Lni8KMYy3wNAvcZxKo5mNDCJXM3IppRCSh2iRWMSG4iy8vk9Z5zXVq7t1FtX5dxFFGx+gEnSEXXaI6ukUN1EQU5egZvaI368l6sd6tj3lrySpmDtEfWJ8/7hmWGA==</latexit>

�e
<latexit sha1_base64="gRKFy+QFytmwqWy0cvo5FmmPz8I=">AAAB7XicbVA9SwNBEJ3zM8avqGBjsxgEq3Bno4VFwMYygrkEkjPubeaSNXu3x+6eEo78BxsLRWz9P3b+GzcfhSY+GHi8N8PMvDAVXBvX/XaWlldW19YLG8XNre2d3dLevq9lphjWmRRSNUOqUfAE64Ybgc1UIY1DgY1wcDX2G4+oNJfJrRmmGMS0l/CIM2qs5LfTPr/DTqnsVtwJyCLxZqRcPfSf7gGg1il9tbuSZTEmhgmqdctzUxPkVBnOBI6K7UxjStmA9rBlaUJj1EE+uXZETqzSJZFUthJDJurviZzGWg/j0HbG1PT1vDcW//NamYkugpwnaWYwYdNFUSaIkWT8OulyhcyIoSWUKW5vJaxPFWXGBlS0IXjzLy8S/6ziuRXvxqZxCVMU4AiO4RQ8OIcqXEMN6sDgAZ7hFd4c6bw4787HtHXJmc0cwB84nz+QDpCP</latexit><latexit sha1_base64="74MJShuZzxGyM2nLY3EY87InuhI=">AAAB7XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRguLgI1lBLMJJGuYndxNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kikKDJjxRrZBo4ExAwzDDoSUVkDjk0AyHl2O/eQ9Ks0TcmExCEJO+YBGjxFjJ78gBu4VuueJW3QnwIvFmpFI78B9k9v1e75Y/O72EpjEIQznRuu250gQ5UYZRDqNSJ9UgCR2SPrQtFSQGHeSTa0f42Co9HCXKljB4ov6eyEmsdRaHtjMmZqDnvbH4n9dOTXQe5EzI1ICg00VRyrFJ8Ph13GMKqOGZJYQqZm/FdEAUocYGVLIhePMvLxL/tOq5Ve/apnGBpiiiQ3SETpCHzlANXaE6aiCK7tAjekYvTuI8Oa/O27S14Mxm9tEfOB8/TZOSnA==</latexit><latexit sha1_base64="74MJShuZzxGyM2nLY3EY87InuhI=">AAAB7XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRguLgI1lBLMJJGuYndxNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kikKDJjxRrZBo4ExAwzDDoSUVkDjk0AyHl2O/eQ9Ks0TcmExCEJO+YBGjxFjJ78gBu4VuueJW3QnwIvFmpFI78B9k9v1e75Y/O72EpjEIQznRuu250gQ5UYZRDqNSJ9UgCR2SPrQtFSQGHeSTa0f42Co9HCXKljB4ov6eyEmsdRaHtjMmZqDnvbH4n9dOTXQe5EzI1ICg00VRyrFJ8Ph13GMKqOGZJYQqZm/FdEAUocYGVLIhePMvLxL/tOq5Ve/apnGBpiiiQ3SETpCHzlANXaE6aiCK7tAjekYvTuI8Oa/O27S14Mxm9tEfOB8/TZOSnA==</latexit><latexit sha1_base64="pLq6KB/1S9uyUeWp/G4byg43mK0=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5stLAI2FhGMB+QnGFvM5es2ds9dveEEPIfbCwUsfX/2Plv3CRXaOKDgcd7M8zMi1LBjfX9b6+wtr6xuVXcLu3s7u0flA+PmkZlmmGDKaF0O6IGBZfYsNwKbKcaaRIJbEWjm5nfekJtuJL3dpximNCB5DFn1Dqp2U2H/AF75Ypf9ecgqyTISQVy1Hvlr25fsSxBaZmgxnQCP7XhhGrLmcBpqZsZTCkb0QF2HJU0QRNO5tdOyZlT+iRW2pW0ZK7+npjQxJhxErnOhNqhWfZm4n9eJ7PxVTjhMs0sSrZYFGeCWEVmr5M+18isGDtCmebuVsKGVFNmXUAlF0Kw/PIqaV5UA78a3PmV2nUeRxFO4BTOIYBLqMEt1KEBDB7hGV7hzVPei/fufSxaC14+cwx/4H3+AIWDjww=</latexit>

E
<latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit><latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit><latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit><latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit>

V
<latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit><latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit><latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit><latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit>

(c) Message-passing neural network

Edge block Node block Global block

V �
<latexit sha1_base64="gAQ7qdt3IKvK5oBqK3uN1PHYi1k=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNoFe4koIVFwMYyivmA5Ah7m7lkyd7esbsnhCP/wMZCEVv/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6aF13i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5tfOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmb1NBlwhM2JiCWWK21sJG1FFmbHhlGwI3vLLq6R1WfXcqndfq9Rv8jiKcAKncAEeXEEd7qABTWAQwjO8wpszdl6cd+dj0Vpw8plj+APn8wcRSI0F</latexit><latexit sha1_base64="gAQ7qdt3IKvK5oBqK3uN1PHYi1k=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNoFe4koIVFwMYyivmA5Ah7m7lkyd7esbsnhCP/wMZCEVv/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6aF13i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5tfOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmb1NBlwhM2JiCWWK21sJG1FFmbHhlGwI3vLLq6R1WfXcqndfq9Rv8jiKcAKncAEeXEEd7qABTWAQwjO8wpszdl6cd+dj0Vpw8plj+APn8wcRSI0F</latexit><latexit sha1_base64="gAQ7qdt3IKvK5oBqK3uN1PHYi1k=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNoFe4koIVFwMYyivmA5Ah7m7lkyd7esbsnhCP/wMZCEVv/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6aF13i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5tfOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmb1NBlwhM2JiCWWK21sJG1FFmbHhlGwI3vLLq6R1WfXcqndfq9Rv8jiKcAKncAEeXEEd7qABTWAQwjO8wpszdl6cd+dj0Vpw8plj+APn8wcRSI0F</latexit><latexit sha1_base64="gAQ7qdt3IKvK5oBqK3uN1PHYi1k=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNoFe4koIVFwMYyivmA5Ah7m7lkyd7esbsnhCP/wMZCEVv/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6aF13i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5tfOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmb1NBlwhM2JiCWWK21sJG1FFmbHhlGwI3vLLq6R1WfXcqndfq9Rv8jiKcAKncAEeXEEd7qABTWAQwjO8wpszdl6cd+dj0Vpw8plj+APn8wcRSI0F</latexit>

<latexit sha1_base64="m8MJ1M94ujO0d0COo5n2Dsol6rc=">AAAB53icbVC7SgNBFL0bXzG+opY2g0GwCrs2phAM2FhGMA9IFpmdvZsMmZ1dZmaFsKS0sbFQxNZP8Rfs/AZ/wsmj0MQDFw7nnMt9BKng2rjul1NYWV1b3yhulra2d3b3yvsHLZ1kimGTJSJRnYBqFFxi03AjsJMqpHEgsB0MryZ++x6V5om8NaMU/Zj2JY84o8ZKjbtyxa26U5Bl4s1J5fLj+4EAgM1/9sKEZTFKwwTVuuu5qfFzqgxnAselXqYxpWxI+9i1VNIYtZ9P9xyTE6uEJEqULWnIVP3dkdNY61Ec2GRMzUAvehPxP6+bmajm51ymmUHJZoOiTBCTkMnRJOQKmREjSyhT3O5K2IAqyox9Tck+wVs8eZm0zqqeW/Vu3Er9AmYowhEcwyl4cA51uIYGNIFBCI/wDC8Od56cV+dtFi04855D+APn/Qd/sI8A</latexit><latexit sha1_base64="q1zM5ZsCNMJAtNUZI97B98ATlaA=">AAAB53icbVC7SgNBFL3rM8ZX1FKQwSBYhV0bLQQDNpYJmAckQWZn7yZDZmeXmVkhLCltbCwUsfUvbP0FO79BP8LJo9DEAxcO55zLffiJ4Nq47qezsLi0vLKaW8uvb2xubRd2dus6ThXDGotFrJo+1Si4xJrhRmAzUUgjX2DD71+O/MYtKs1jeW0GCXYi2pU85IwaK1VuCkW35I5B5ok3JcWL96+7g7fqt81/tIOYpRFKwwTVuuW5ielkVBnOBA7z7VRjQlmfdrFlqaQR6k423nNIjqwSkDBWtqQhY/V3R0YjrQeRb5MRNT09643E/7xWasKzTsZlkhqUbDIoTAUxMRkdTQKukBkxsIQyxe2uhPWooszY1+TtE7zZk+dJ/aTkuSWv6hbL5zBBDvbhEI7Bg1MowxVUoAYMAriHR3hyuPPgPDsvk+iCM+3Zgz9wXn8AGkeQ8w==</latexit><latexit sha1_base64="q1zM5ZsCNMJAtNUZI97B98ATlaA=">AAAB53icbVC7SgNBFL3rM8ZX1FKQwSBYhV0bLQQDNpYJmAckQWZn7yZDZmeXmVkhLCltbCwUsfUvbP0FO79BP8LJo9DEAxcO55zLffiJ4Nq47qezsLi0vLKaW8uvb2xubRd2dus6ThXDGotFrJo+1Si4xJrhRmAzUUgjX2DD71+O/MYtKs1jeW0GCXYi2pU85IwaK1VuCkW35I5B5ok3JcWL96+7g7fqt81/tIOYpRFKwwTVuuW5ielkVBnOBA7z7VRjQlmfdrFlqaQR6k423nNIjqwSkDBWtqQhY/V3R0YjrQeRb5MRNT09643E/7xWasKzTsZlkhqUbDIoTAUxMRkdTQKukBkxsIQyxe2uhPWooszY1+TtE7zZk+dJ/aTkuSWv6hbL5zBBDvbhEI7Bg1MowxVUoAYMAriHR3hyuPPgPDsvk+iCM+3Zgz9wXn8AGkeQ8w==</latexit><latexit sha1_base64="ioxb3woZF1oAlTScqds23PrgiMY=">AAAB53icbVC7SgNBFL3rM8ZX1NJmMAhWYdZGC4uAjWUE84BkkdnZ2WTI7Owyc1cIS37AxkIRW3/Jzr9xkmyhiQcGDuecy9x7wkxJi5R+e2vrG5tb25Wd6u7e/sFh7ei4Y9PccNHmqUpNL2RWKKlFGyUq0cuMYEmoRDcc38787pMwVqb6ASeZCBI21DKWnKGTWo+1Om3QOcgq8UtShxIu/zWIUp4nQiNXzNq+TzMMCmZQciWm1UFuRcb4mA1F31HNEmGDYr7nlJw7JSJxatzTSObq74mCJdZOktAlE4Yju+zNxP+8fo7xdVBIneUoNF98FOeKYEpmR5NIGsFRTRxh3Ei3K+EjZhhHV03VleAvn7xKOpcNnzb8e1pv3pR1VOAUzuACfLiCJtxBC9rAIYJneIU3T3ov3rv3sYiueeXMCfyB9/kDCGmMcA==</latexit>

�v
<latexit sha1_base64="HCiXjOq04H3f4Ed7vqyiRfd+2dI=">AAAB7XicbVA9SwNBEJ2LXzF+nQo2NotBsAp3NlpYBGwsI5hLIDnj3mYvWbO3e+zuRcKR/2BjoYit/8fOf+Pmo9DEBwOP92aYmRelnGnjed9OYWV1bX2juFna2t7Z3XP3DwItM0VonUguVTPCmnImaN0ww2kzVRQnEaeNaHA98RtDqjST4s6MUhomuCdYzAg2VgraaZ/dDztu2at4U6Bl4s9JuXoUPD0AQK3jfrW7kmQJFYZwrHXL91IT5lgZRjgdl9qZpikmA9yjLUsFTqgO8+m1Y3RqlS6KpbIlDJqqvydynGg9SiLbmWDT14veRPzPa2UmvgxzJtLMUEFmi+KMIyPR5HXUZYoSw0eWYKKYvRWRPlaYGBtQyYbgL768TILziu9V/FubxhXMUIRjOIEz8OECqnADNagDgUd4hld4c6Tz4rw7H7PWgjOfOYQ/cD5/AKnSkKA=</latexit><latexit sha1_base64="/voSHBGyFE5xYPVKPYM/GTIarLQ=">AAAB7XicbVC7SgNBFL3rM8ZXVLCxWQyCVdi10cIiYGMZwWwCyRpmJ7PJmNmZYWY2siz5BxsLRbT0f+z8AP/DyaPQxAMXDufcy733RJJRbTzvy1laXlldWy9sFDe3tnd2S3v7gRapwqSOBROqGSFNGOWkbqhhpCkVQUnESCMaXI39xpAoTQW/NZkkYYJ6nMYUI2OloC379G7YKZW9ijeBu0j8GSlXD4MHmX2/1zqlz3ZX4DQh3GCGtG75njRhjpShmJFRsZ1qIhEeoB5pWcpRQnSYT64duSdW6bqxULa4cSfq74kcJVpnSWQ7E2T6et4bi/95rdTEF2FOuUwN4Xi6KE6Za4Q7ft3tUkWwYZklCCtqb3VxHymEjQ2oaEPw519eJMFZxfcq/o1N4xKmKMARHMMp+HAOVbiGGtQBwz08wjO8OMJ5cl6dt2nrkjObOYA/cD5+AGdXkq0=</latexit><latexit sha1_base64="/voSHBGyFE5xYPVKPYM/GTIarLQ=">AAAB7XicbVC7SgNBFL3rM8ZXVLCxWQyCVdi10cIiYGMZwWwCyRpmJ7PJmNmZYWY2siz5BxsLRbT0f+z8AP/DyaPQxAMXDufcy733RJJRbTzvy1laXlldWy9sFDe3tnd2S3v7gRapwqSOBROqGSFNGOWkbqhhpCkVQUnESCMaXI39xpAoTQW/NZkkYYJ6nMYUI2OloC379G7YKZW9ijeBu0j8GSlXD4MHmX2/1zqlz3ZX4DQh3GCGtG75njRhjpShmJFRsZ1qIhEeoB5pWcpRQnSYT64duSdW6bqxULa4cSfq74kcJVpnSWQ7E2T6et4bi/95rdTEF2FOuUwN4Xi6KE6Za4Q7ft3tUkWwYZklCCtqb3VxHymEjQ2oaEPw519eJMFZxfcq/o1N4xKmKMARHMMp+HAOVbiGGtQBwz08wjO8OMJ5cl6dt2nrkjObOYA/cD5+AGdXkq0=</latexit><latexit sha1_base64="Fc8T4ygtia14k1z/CDji4ezWDqY=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswp2NFhYBG8sI5gOSM+xtNsmavd1jdy4QjvwHGwtFbP0/dv4bN8kVmvhg4PHeDDPzokQKi77/7a2tb2xubRd2irt7+weHpaPjhtWpYbzOtNSmFVHLpVC8jgIlbyWG0ziSvBmNbmd+c8yNFVo94CThYUwHSvQFo+ikRicZisdxt1T2K/4cZJUEOSlDjlq39NXpaZbGXCGT1Np24CcYZtSgYJJPi53U8oSyER3wtqOKxtyG2fzaKTl3So/0tXGlkMzV3xMZja2dxJHrjCkO7bI3E//z2in2r8NMqCRFrthiUT+VBDWZvU56wnCGcuIIZUa4WwkbUkMZuoCKLoRg+eVV0risBH4luPfL1Zs8jgKcwhlcQABXUIU7qEEdGDzBM7zCm6e9F+/d+1i0rnn5zAn8gff5A59Hjx0=</latexit>

⇢e�v
<latexit sha1_base64="s3/Cw/iD/Ic9TAit26LWmPV1hK0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWznTRLN9mwu6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKVEJik0qeBCdgKigLMEmpppDp1UAokDDu1geDP12yOQionkXo9T8GMySFjIKNFG6tlHnozEQw6eZINIEynFIx5NenbVqTkz4GXiFqSKCjR69pfXFzSLIdGUE6W6rpNqPydSM8phUvEyBSmhQzKArqEJiUH5+ez8CT41Sh+HQppKNJ6pvydyEis1jgPTGRMdqUVvKv7ndTMdXvk5S9JMQ0Lni8KMYy3wNAvcZxKo5mNDCJXM3IppRCSh2iRWMSG4iy8vk9Z5zXVq7t1FtX5dxFFGx+gEnSEXXaI6ukUN1EQU5egZvaI368l6sd6tj3lrySpmDtEfWJ8/7hmWGA==</latexit><latexit sha1_base64="s3/Cw/iD/Ic9TAit26LWmPV1hK0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWznTRLN9mwu6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKVEJik0qeBCdgKigLMEmpppDp1UAokDDu1geDP12yOQionkXo9T8GMySFjIKNFG6tlHnozEQw6eZINIEynFIx5NenbVqTkz4GXiFqSKCjR69pfXFzSLIdGUE6W6rpNqPydSM8phUvEyBSmhQzKArqEJiUH5+ez8CT41Sh+HQppKNJ6pvydyEis1jgPTGRMdqUVvKv7ndTMdXvk5S9JMQ0Lni8KMYy3wNAvcZxKo5mNDCJXM3IppRCSh2iRWMSG4iy8vk9Z5zXVq7t1FtX5dxFFGx+gEnSEXXaI6ukUN1EQU5egZvaI368l6sd6tj3lrySpmDtEfWJ8/7hmWGA==</latexit><latexit sha1_base64="s3/Cw/iD/Ic9TAit26LWmPV1hK0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWznTRLN9mwu6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKVEJik0qeBCdgKigLMEmpppDp1UAokDDu1geDP12yOQionkXo9T8GMySFjIKNFG6tlHnozEQw6eZINIEynFIx5NenbVqTkz4GXiFqSKCjR69pfXFzSLIdGUE6W6rpNqPydSM8phUvEyBSmhQzKArqEJiUH5+ez8CT41Sh+HQppKNJ6pvydyEis1jgPTGRMdqUVvKv7ndTMdXvk5S9JMQ0Lni8KMYy3wNAvcZxKo5mNDCJXM3IppRCSh2iRWMSG4iy8vk9Z5zXVq7t1FtX5dxFFGx+gEnSEXXaI6ukUN1EQU5egZvaI368l6sd6tj3lrySpmDtEfWJ8/7hmWGA==</latexit><latexit sha1_base64="s3/Cw/iD/Ic9TAit26LWmPV1hK0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWznTRLN9mwu6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKVEJik0qeBCdgKigLMEmpppDp1UAokDDu1geDP12yOQionkXo9T8GMySFjIKNFG6tlHnozEQw6eZINIEynFIx5NenbVqTkz4GXiFqSKCjR69pfXFzSLIdGUE6W6rpNqPydSM8phUvEyBSmhQzKArqEJiUH5+ez8CT41Sh+HQppKNJ6pvydyEis1jgPTGRMdqUVvKv7ndTMdXvk5S9JMQ0Lni8KMYy3wNAvcZxKo5mNDCJXM3IppRCSh2iRWMSG4iy8vk9Z5zXVq7t1FtX5dxFFGx+gEnSEXXaI6ukUN1EQU5egZvaI368l6sd6tj3lrySpmDtEfWJ8/7hmWGA==</latexit>

�e
<latexit sha1_base64="gRKFy+QFytmwqWy0cvo5FmmPz8I=">AAAB7XicbVA9SwNBEJ3zM8avqGBjsxgEq3Bno4VFwMYygrkEkjPubeaSNXu3x+6eEo78BxsLRWz9P3b+GzcfhSY+GHi8N8PMvDAVXBvX/XaWlldW19YLG8XNre2d3dLevq9lphjWmRRSNUOqUfAE64Ybgc1UIY1DgY1wcDX2G4+oNJfJrRmmGMS0l/CIM2qs5LfTPr/DTqnsVtwJyCLxZqRcPfSf7gGg1il9tbuSZTEmhgmqdctzUxPkVBnOBI6K7UxjStmA9rBlaUJj1EE+uXZETqzSJZFUthJDJurviZzGWg/j0HbG1PT1vDcW//NamYkugpwnaWYwYdNFUSaIkWT8OulyhcyIoSWUKW5vJaxPFWXGBlS0IXjzLy8S/6ziuRXvxqZxCVMU4AiO4RQ8OIcqXEMN6sDgAZ7hFd4c6bw4787HtHXJmc0cwB84nz+QDpCP</latexit><latexit sha1_base64="74MJShuZzxGyM2nLY3EY87InuhI=">AAAB7XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRguLgI1lBLMJJGuYndxNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kikKDJjxRrZBo4ExAwzDDoSUVkDjk0AyHl2O/eQ9Ks0TcmExCEJO+YBGjxFjJ78gBu4VuueJW3QnwIvFmpFI78B9k9v1e75Y/O72EpjEIQznRuu250gQ5UYZRDqNSJ9UgCR2SPrQtFSQGHeSTa0f42Co9HCXKljB4ov6eyEmsdRaHtjMmZqDnvbH4n9dOTXQe5EzI1ICg00VRyrFJ8Ph13GMKqOGZJYQqZm/FdEAUocYGVLIhePMvLxL/tOq5Ve/apnGBpiiiQ3SETpCHzlANXaE6aiCK7tAjekYvTuI8Oa/O27S14Mxm9tEfOB8/TZOSnA==</latexit><latexit sha1_base64="74MJShuZzxGyM2nLY3EY87InuhI=">AAAB7XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRguLgI1lBLMJJGuYndxNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kikKDJjxRrZBo4ExAwzDDoSUVkDjk0AyHl2O/eQ9Ks0TcmExCEJO+YBGjxFjJ78gBu4VuueJW3QnwIvFmpFI78B9k9v1e75Y/O72EpjEIQznRuu250gQ5UYZRDqNSJ9UgCR2SPrQtFSQGHeSTa0f42Co9HCXKljB4ov6eyEmsdRaHtjMmZqDnvbH4n9dOTXQe5EzI1ICg00VRyrFJ8Ph13GMKqOGZJYQqZm/FdEAUocYGVLIhePMvLxL/tOq5Ve/apnGBpiiiQ3SETpCHzlANXaE6aiCK7tAjekYvTuI8Oa/O27S14Mxm9tEfOB8/TZOSnA==</latexit><latexit sha1_base64="pLq6KB/1S9uyUeWp/G4byg43mK0=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5stLAI2FhGMB+QnGFvM5es2ds9dveEEPIfbCwUsfX/2Plv3CRXaOKDgcd7M8zMi1LBjfX9b6+wtr6xuVXcLu3s7u0flA+PmkZlmmGDKaF0O6IGBZfYsNwKbKcaaRIJbEWjm5nfekJtuJL3dpximNCB5DFn1Dqp2U2H/AF75Ypf9ecgqyTISQVy1Hvlr25fsSxBaZmgxnQCP7XhhGrLmcBpqZsZTCkb0QF2HJU0QRNO5tdOyZlT+iRW2pW0ZK7+npjQxJhxErnOhNqhWfZm4n9eJ7PxVTjhMs0sSrZYFGeCWEVmr5M+18isGDtCmebuVsKGVFNmXUAlF0Kw/PIqaV5UA78a3PmV2nUeRxFO4BTOIYBLqMEt1KEBDB7hGV7hzVPei/fufSxaC14+cwx/4H3+AIWDjww=</latexit>

E
<latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit><latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit><latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit><latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit>

V
<latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit><latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit><latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit><latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit>

(d) Non-local neural network

Edge block Node block Global block

u�
<latexit sha1_base64="Z/n1gIms2/ONBt0R58c8NGdBbqU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovoqiQi6MJFwY3LCvYBbSiT6aQdOpmEmRuhhH6GGxeKuPVr3Pk3TtostPXAwOGce5lzT5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJne533ni2ohYPeI04X5ER0qEglG0Uq8fURwHYZbOzgfVmlt35yCrxCtIDQo0B9Wv/jBmacQVMkmN6Xlugn5GNQom+azSTw1PKJvQEe9ZqmjEjZ/NI8/ImVWGJIy1fQrJXP29kdHImGkU2Mk8oln2cvE/r5dieONnQiUpcsUWH4WpJBiT/H4yFJozlFNLKNPCZiVsTDVlaFuq2BK85ZNXSfuy7rl17+Gq1rgt6ijDCZzCBXhwDQ24hya0gEEMz/AKbw46L86787EYLTnFzjH8gfP5A1s4kUQ=</latexit><latexit sha1_base64="Z/n1gIms2/ONBt0R58c8NGdBbqU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovoqiQi6MJFwY3LCvYBbSiT6aQdOpmEmRuhhH6GGxeKuPVr3Pk3TtostPXAwOGce5lzT5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJne533ni2ohYPeI04X5ER0qEglG0Uq8fURwHYZbOzgfVmlt35yCrxCtIDQo0B9Wv/jBmacQVMkmN6Xlugn5GNQom+azSTw1PKJvQEe9ZqmjEjZ/NI8/ImVWGJIy1fQrJXP29kdHImGkU2Mk8oln2cvE/r5dieONnQiUpcsUWH4WpJBiT/H4yFJozlFNLKNPCZiVsTDVlaFuq2BK85ZNXSfuy7rl17+Gq1rgt6ijDCZzCBXhwDQ24hya0gEEMz/AKbw46L86787EYLTnFzjH8gfP5A1s4kUQ=</latexit><latexit sha1_base64="Z/n1gIms2/ONBt0R58c8NGdBbqU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovoqiQi6MJFwY3LCvYBbSiT6aQdOpmEmRuhhH6GGxeKuPVr3Pk3TtostPXAwOGce5lzT5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJne533ni2ohYPeI04X5ER0qEglG0Uq8fURwHYZbOzgfVmlt35yCrxCtIDQo0B9Wv/jBmacQVMkmN6Xlugn5GNQom+azSTw1PKJvQEe9ZqmjEjZ/NI8/ImVWGJIy1fQrJXP29kdHImGkU2Mk8oln2cvE/r5dieONnQiUpcsUWH4WpJBiT/H4yFJozlFNLKNPCZiVsTDVlaFuq2BK85ZNXSfuy7rl17+Gq1rgt6ijDCZzCBXhwDQ24hya0gEEMz/AKbw46L86787EYLTnFzjH8gfP5A1s4kUQ=</latexit><latexit sha1_base64="Z/n1gIms2/ONBt0R58c8NGdBbqU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovoqiQi6MJFwY3LCvYBbSiT6aQdOpmEmRuhhH6GGxeKuPVr3Pk3TtostPXAwOGce5lzT5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJne533ni2ohYPeI04X5ER0qEglG0Uq8fURwHYZbOzgfVmlt35yCrxCtIDQo0B9Wv/jBmacQVMkmN6Xlugn5GNQom+azSTw1PKJvQEe9ZqmjEjZ/NI8/ImVWGJIy1fQrJXP29kdHImGkU2Mk8oln2cvE/r5dieONnQiUpcsUWH4WpJBiT/H4yFJozlFNLKNPCZiVsTDVlaFuq2BK85ZNXSfuy7rl17+Gq1rgt6ijDCZzCBXhwDQ24hya0gEEMz/AKbw46L86787EYLTnFzjH8gfP5A1s4kUQ=</latexit>�u

<latexit sha1_base64="znt8hwWv6wryqwCugrweUa+jkM8=">AAAB7XicbVA9SwNBEJ3zM8avqGBjsxgEq3Bno4VFwMYygrkEkjPubfaSNXu7y+6eEo78BxsLRWz9P3b+GzcfhSY+GHi8N8PMvFhxZqzvf3tLyyura+uFjeLm1vbObmlvPzQy04TWieRSN2NsKGeC1i2znDaVpjiNOW3Eg6ux33ik2jApbu1Q0SjFPcESRrB1UthWfXaXdUplv+JPgBZJMCPl6mH4dA8AtU7pq92VJEupsIRjY1qBr2yUY20Z4XRUbGeGKkwGuEdbjgqcUhPlk2tH6MQpXZRI7UpYNFF/T+Q4NWaYxq4zxbZv5r2x+J/XymxyEeVMqMxSQaaLkowjK9H4ddRlmhLLh45gopm7FZE+1phYF1DRhRDMv7xIwrNK4FeCG5fGJUxRgCM4hlMI4ByqcA01qAOBB3iGV3jzpPfivXsf09YlbzZzAH/gff4AqE6Qnw==</latexit><latexit sha1_base64="Nc0DXje6uYB+/0fHlXL99yCq0no=">AAAB7XicbVC7SgNBFL0bXzG+ooKNzWAQrMKujRYWARvLCGYTSNYwO5lNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kitAGSXiiWiHWlDNBG4YZTltSURyHnDbD4eXYb95TpVkibkwmaRDjvmARI9hYye/IAbtNu+WKW3UnQIvEm5FK7cB/kNn3e71b/uz0EpLGVBjCsdZtz5UmyLEyjHA6KnVSTSUmQ9ynbUsFjqkO8sm1I3RslR6KEmVLGDRRf0/kONY6i0PbGWMz0PPeWPzPa6cmOg9yJmRqqCDTRVHKkUnQ+HXUY4oSwzNLMFHM3orIACtMjA2oZEPw5l9eJP5p1XOr3rVN4wKmKMIhHMEJeHAGNbiCOjSAwB08wjO8OInz5Lw6b9PWgjOb2Yc/cD5+AGXTkqw=</latexit><latexit sha1_base64="Nc0DXje6uYB+/0fHlXL99yCq0no=">AAAB7XicbVC7SgNBFL0bXzG+ooKNzWAQrMKujRYWARvLCGYTSNYwO5lNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kitAGSXiiWiHWlDNBG4YZTltSURyHnDbD4eXYb95TpVkibkwmaRDjvmARI9hYye/IAbtNu+WKW3UnQIvEm5FK7cB/kNn3e71b/uz0EpLGVBjCsdZtz5UmyLEyjHA6KnVSTSUmQ9ynbUsFjqkO8sm1I3RslR6KEmVLGDRRf0/kONY6i0PbGWMz0PPeWPzPa6cmOg9yJmRqqCDTRVHKkUnQ+HXUY4oSwzNLMFHM3orIACtMjA2oZEPw5l9eJP5p1XOr3rVN4wKmKMIhHMEJeHAGNbiCOjSAwB08wjO8OInz5Lw6b9PWgjOb2Yc/cD5+AGXTkqw=</latexit><latexit sha1_base64="S5XnA5iYIAgqxiI+i0ptSwAiKP4=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5stLAI2FhGMB+QnGFvM5es2ds9dveEEPIfbCwUsfX/2Plv3CRXaOKDgcd7M8zMi1LBjfX9b6+wtr6xuVXcLu3s7u0flA+PmkZlmmGDKaF0O6IGBZfYsNwKbKcaaRIJbEWjm5nfekJtuJL3dpximNCB5DFn1Dqp2U2H/CHrlSt+1Z+DrJIgJxXIUe+Vv7p9xbIEpWWCGtMJ/NSGE6otZwKnpW5mMKVsRAfYcVTSBE04mV87JWdO6ZNYaVfSkrn6e2JCE2PGSeQ6E2qHZtmbif95nczGV+GEyzSzKNliUZwJYhWZvU76XCOzYuwIZZq7WwkbUk2ZdQGVXAjB8surpHlRDfxqcOdXatd5HEU4gVM4hwAuoQa3UIcGMHiEZ3iFN095L96797FoLXj5zDH8gff5A53Djxw=</latexit>

⇢e�u
<latexit sha1_base64="2suSYs2KtjHJeb1CIts1JrhYPII=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCp5KIoMeiF48V7Ac0sWy2m3bpZjfsTpQSCv4VLx4U8erv8Oa/cdvmoK0PBh7vzTAzL0oFN+B5387S8srq2nppo7y5tb2z6+7tN43KNGUNqoTS7YgYJrhkDeAgWDvVjCSRYK1oeD3xWw9MG67kHYxSFiakL3nMKQErdd3DQA/Ufc4CzfsDIFqrR5yNu27Fq3pT4EXiF6SCCtS77lfQUzRLmAQqiDEd30shzIkGTgUbl4PMsJTQIemzjqWSJMyE+fT8MT6xSg/HStuSgKfq74mcJMaMksh2JgQGZt6biP95nQziyzDnMs2ASTpbFGcCg8KTLHCPa0ZBjCwhVHN7K6YDogkFm1jZhuDPv7xImmdV36v6t+eV2lURRwkdoWN0inx0gWroBtVRA1GUo2f0it6cJ+fFeXc+Zq1LTjFzgP7A+fwB7JSWFw==</latexit><latexit sha1_base64="2suSYs2KtjHJeb1CIts1JrhYPII=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCp5KIoMeiF48V7Ac0sWy2m3bpZjfsTpQSCv4VLx4U8erv8Oa/cdvmoK0PBh7vzTAzL0oFN+B5387S8srq2nppo7y5tb2z6+7tN43KNGUNqoTS7YgYJrhkDeAgWDvVjCSRYK1oeD3xWw9MG67kHYxSFiakL3nMKQErdd3DQA/Ufc4CzfsDIFqrR5yNu27Fq3pT4EXiF6SCCtS77lfQUzRLmAQqiDEd30shzIkGTgUbl4PMsJTQIemzjqWSJMyE+fT8MT6xSg/HStuSgKfq74mcJMaMksh2JgQGZt6biP95nQziyzDnMs2ASTpbFGcCg8KTLHCPa0ZBjCwhVHN7K6YDogkFm1jZhuDPv7xImmdV36v6t+eV2lURRwkdoWN0inx0gWroBtVRA1GUo2f0it6cJ+fFeXc+Zq1LTjFzgP7A+fwB7JSWFw==</latexit><latexit sha1_base64="2suSYs2KtjHJeb1CIts1JrhYPII=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCp5KIoMeiF48V7Ac0sWy2m3bpZjfsTpQSCv4VLx4U8erv8Oa/cdvmoK0PBh7vzTAzL0oFN+B5387S8srq2nppo7y5tb2z6+7tN43KNGUNqoTS7YgYJrhkDeAgWDvVjCSRYK1oeD3xWw9MG67kHYxSFiakL3nMKQErdd3DQA/Ufc4CzfsDIFqrR5yNu27Fq3pT4EXiF6SCCtS77lfQUzRLmAQqiDEd30shzIkGTgUbl4PMsJTQIemzjqWSJMyE+fT8MT6xSg/HStuSgKfq74mcJMaMksh2JgQGZt6biP95nQziyzDnMs2ASTpbFGcCg8KTLHCPa0ZBjCwhVHN7K6YDogkFm1jZhuDPv7xImmdV36v6t+eV2lURRwkdoWN0inx0gWroBtVRA1GUo2f0it6cJ+fFeXc+Zq1LTjFzgP7A+fwB7JSWFw==</latexit><latexit sha1_base64="2suSYs2KtjHJeb1CIts1JrhYPII=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCp5KIoMeiF48V7Ac0sWy2m3bpZjfsTpQSCv4VLx4U8erv8Oa/cdvmoK0PBh7vzTAzL0oFN+B5387S8srq2nppo7y5tb2z6+7tN43KNGUNqoTS7YgYJrhkDeAgWDvVjCSRYK1oeD3xWw9MG67kHYxSFiakL3nMKQErdd3DQA/Ufc4CzfsDIFqrR5yNu27Fq3pT4EXiF6SCCtS77lfQUzRLmAQqiDEd30shzIkGTgUbl4PMsJTQIemzjqWSJMyE+fT8MT6xSg/HStuSgKfq74mcJMaMksh2JgQGZt6biP95nQziyzDnMs2ASTpbFGcCg8KTLHCPa0ZBjCwhVHN7K6YDogkFm1jZhuDPv7xImmdV36v6t+eV2lURRwkdoWN0inx0gWroBtVRA1GUo2f0it6cJ+fFeXc+Zq1LTjFzgP7A+fwB7JSWFw==</latexit>

�e
<latexit sha1_base64="gRKFy+QFytmwqWy0cvo5FmmPz8I=">AAAB7XicbVA9SwNBEJ3zM8avqGBjsxgEq3Bno4VFwMYygrkEkjPubeaSNXu3x+6eEo78BxsLRWz9P3b+GzcfhSY+GHi8N8PMvDAVXBvX/XaWlldW19YLG8XNre2d3dLevq9lphjWmRRSNUOqUfAE64Ybgc1UIY1DgY1wcDX2G4+oNJfJrRmmGMS0l/CIM2qs5LfTPr/DTqnsVtwJyCLxZqRcPfSf7gGg1il9tbuSZTEmhgmqdctzUxPkVBnOBI6K7UxjStmA9rBlaUJj1EE+uXZETqzSJZFUthJDJurviZzGWg/j0HbG1PT1vDcW//NamYkugpwnaWYwYdNFUSaIkWT8OulyhcyIoSWUKW5vJaxPFWXGBlS0IXjzLy8S/6ziuRXvxqZxCVMU4AiO4RQ8OIcqXEMN6sDgAZ7hFd4c6bw4787HtHXJmc0cwB84nz+QDpCP</latexit><latexit sha1_base64="74MJShuZzxGyM2nLY3EY87InuhI=">AAAB7XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRguLgI1lBLMJJGuYndxNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kikKDJjxRrZBo4ExAwzDDoSUVkDjk0AyHl2O/eQ9Ks0TcmExCEJO+YBGjxFjJ78gBu4VuueJW3QnwIvFmpFI78B9k9v1e75Y/O72EpjEIQznRuu250gQ5UYZRDqNSJ9UgCR2SPrQtFSQGHeSTa0f42Co9HCXKljB4ov6eyEmsdRaHtjMmZqDnvbH4n9dOTXQe5EzI1ICg00VRyrFJ8Ph13GMKqOGZJYQqZm/FdEAUocYGVLIhePMvLxL/tOq5Ve/apnGBpiiiQ3SETpCHzlANXaE6aiCK7tAjekYvTuI8Oa/O27S14Mxm9tEfOB8/TZOSnA==</latexit><latexit sha1_base64="74MJShuZzxGyM2nLY3EY87InuhI=">AAAB7XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRguLgI1lBLMJJGuYndxNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kikKDJjxRrZBo4ExAwzDDoSUVkDjk0AyHl2O/eQ9Ks0TcmExCEJO+YBGjxFjJ78gBu4VuueJW3QnwIvFmpFI78B9k9v1e75Y/O72EpjEIQznRuu250gQ5UYZRDqNSJ9UgCR2SPrQtFSQGHeSTa0f42Co9HCXKljB4ov6eyEmsdRaHtjMmZqDnvbH4n9dOTXQe5EzI1ICg00VRyrFJ8Ph13GMKqOGZJYQqZm/FdEAUocYGVLIhePMvLxL/tOq5Ve/apnGBpiiiQ3SETpCHzlANXaE6aiCK7tAjekYvTuI8Oa/O27S14Mxm9tEfOB8/TZOSnA==</latexit><latexit sha1_base64="pLq6KB/1S9uyUeWp/G4byg43mK0=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5stLAI2FhGMB+QnGFvM5es2ds9dveEEPIfbCwUsfX/2Plv3CRXaOKDgcd7M8zMi1LBjfX9b6+wtr6xuVXcLu3s7u0flA+PmkZlmmGDKaF0O6IGBZfYsNwKbKcaaRIJbEWjm5nfekJtuJL3dpximNCB5DFn1Dqp2U2H/AF75Ypf9ecgqyTISQVy1Hvlr25fsSxBaZmgxnQCP7XhhGrLmcBpqZsZTCkb0QF2HJU0QRNO5tdOyZlT+iRW2pW0ZK7+npjQxJhxErnOhNqhWfZm4n9eJ7PxVTjhMs0sSrZYFGeCWEVmr5M+18isGDtCmebuVsKGVFNmXUAlF0Kw/PIqaV5UA78a3PmV2nUeRxFO4BTOIYBLqMEt1KEBDB7hGV7hzVPei/fufSxaC14+cwx/4H3+AIWDjww=</latexit>

E
<latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit><latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit><latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit><latexit sha1_base64="iJ/x8cSgmmYNbMN8WtCvsNrlH/U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHgggeW7Af0Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49uZ335CpXksH8wkQT+iQ8lDzqixUuOuX664VXcOskq8nFQgR71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSeui6rlVr3FZqd3kcRThBE7hHDy4ghrcQx2awADhGV7hzXl0Xpx352PRWnDymWP4A+fzB5cfjMM=</latexit>

V
<latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit><latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit><latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit><latexit sha1_base64="xc4uzoZiBSxZUZkArgltxczS6nM=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwMYyAfMByRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7u533lCpXksH8w0QT+iI8lDzqixUrM9KFfcqrsAWSdeTiqQozEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/Wxw6IxdWGZIwVrakIQv190RGI62nUWA7I2rGetWbi/95vdSEN37GZZIalGy5KEwFMTGZf02GXCEzYmoJZYrbWwkbU0WZsdmUbAje6svrpH1V9dyq17yu1G/zOIpwBudwCR7UoA730IAWMEB4hld4cx6dF+fd+Vi2Fpx85hT+wPn8AbDjjNQ=</latexit>

(e) Relation network

Edge block Node block Global block

u�
<latexit sha1_base64="Z/n1gIms2/ONBt0R58c8NGdBbqU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovoqiQi6MJFwY3LCvYBbSiT6aQdOpmEmRuhhH6GGxeKuPVr3Pk3TtostPXAwOGce5lzT5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJne533ni2ohYPeI04X5ER0qEglG0Uq8fURwHYZbOzgfVmlt35yCrxCtIDQo0B9Wv/jBmacQVMkmN6Xlugn5GNQom+azSTw1PKJvQEe9ZqmjEjZ/NI8/ImVWGJIy1fQrJXP29kdHImGkU2Mk8oln2cvE/r5dieONnQiUpcsUWH4WpJBiT/H4yFJozlFNLKNPCZiVsTDVlaFuq2BK85ZNXSfuy7rl17+Gq1rgt6ijDCZzCBXhwDQ24hya0gEEMz/AKbw46L86787EYLTnFzjH8gfP5A1s4kUQ=</latexit><latexit sha1_base64="Z/n1gIms2/ONBt0R58c8NGdBbqU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovoqiQi6MJFwY3LCvYBbSiT6aQdOpmEmRuhhH6GGxeKuPVr3Pk3TtostPXAwOGce5lzT5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJne533ni2ohYPeI04X5ER0qEglG0Uq8fURwHYZbOzgfVmlt35yCrxCtIDQo0B9Wv/jBmacQVMkmN6Xlugn5GNQom+azSTw1PKJvQEe9ZqmjEjZ/NI8/ImVWGJIy1fQrJXP29kdHImGkU2Mk8oln2cvE/r5dieONnQiUpcsUWH4WpJBiT/H4yFJozlFNLKNPCZiVsTDVlaFuq2BK85ZNXSfuy7rl17+Gq1rgt6ijDCZzCBXhwDQ24hya0gEEMz/AKbw46L86787EYLTnFzjH8gfP5A1s4kUQ=</latexit><latexit sha1_base64="Z/n1gIms2/ONBt0R58c8NGdBbqU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovoqiQi6MJFwY3LCvYBbSiT6aQdOpmEmRuhhH6GGxeKuPVr3Pk3TtostPXAwOGce5lzT5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJne533ni2ohYPeI04X5ER0qEglG0Uq8fURwHYZbOzgfVmlt35yCrxCtIDQo0B9Wv/jBmacQVMkmN6Xlugn5GNQom+azSTw1PKJvQEe9ZqmjEjZ/NI8/ImVWGJIy1fQrJXP29kdHImGkU2Mk8oln2cvE/r5dieONnQiUpcsUWH4WpJBiT/H4yFJozlFNLKNPCZiVsTDVlaFuq2BK85ZNXSfuy7rl17+Gq1rgt6ijDCZzCBXhwDQ24hya0gEEMz/AKbw46L86787EYLTnFzjH8gfP5A1s4kUQ=</latexit><latexit sha1_base64="Z/n1gIms2/ONBt0R58c8NGdBbqU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovoqiQi6MJFwY3LCvYBbSiT6aQdOpmEmRuhhH6GGxeKuPVr3Pk3TtostPXAwOGce5lzT5BIYdB1v53S2vrG5lZ5u7Kzu7d/UD08aps41Yy3WCxj3Q2o4VIo3kKBkncTzWkUSN4JJne533ni2ohYPeI04X5ER0qEglG0Uq8fURwHYZbOzgfVmlt35yCrxCtIDQo0B9Wv/jBmacQVMkmN6Xlugn5GNQom+azSTw1PKJvQEe9ZqmjEjZ/NI8/ImVWGJIy1fQrJXP29kdHImGkU2Mk8oln2cvE/r5dieONnQiUpcsUWH4WpJBiT/H4yFJozlFNLKNPCZiVsTDVlaFuq2BK85ZNXSfuy7rl17+Gq1rgt6ijDCZzCBXhwDQ24hya0gEEMz/AKbw46L86787EYLTnFzjH8gfP5A1s4kUQ=</latexit>�u

<latexit sha1_base64="znt8hwWv6wryqwCugrweUa+jkM8=">AAAB7XicbVA9SwNBEJ3zM8avqGBjsxgEq3Bno4VFwMYygrkEkjPubfaSNXu7y+6eEo78BxsLRWz9P3b+GzcfhSY+GHi8N8PMvFhxZqzvf3tLyyura+uFjeLm1vbObmlvPzQy04TWieRSN2NsKGeC1i2znDaVpjiNOW3Eg6ux33ik2jApbu1Q0SjFPcESRrB1UthWfXaXdUplv+JPgBZJMCPl6mH4dA8AtU7pq92VJEupsIRjY1qBr2yUY20Z4XRUbGeGKkwGuEdbjgqcUhPlk2tH6MQpXZRI7UpYNFF/T+Q4NWaYxq4zxbZv5r2x+J/XymxyEeVMqMxSQaaLkowjK9H4ddRlmhLLh45gopm7FZE+1phYF1DRhRDMv7xIwrNK4FeCG5fGJUxRgCM4hlMI4ByqcA01qAOBB3iGV3jzpPfivXsf09YlbzZzAH/gff4AqE6Qnw==</latexit><latexit sha1_base64="Nc0DXje6uYB+/0fHlXL99yCq0no=">AAAB7XicbVC7SgNBFL0bXzG+ooKNzWAQrMKujRYWARvLCGYTSNYwO5lNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kitAGSXiiWiHWlDNBG4YZTltSURyHnDbD4eXYb95TpVkibkwmaRDjvmARI9hYye/IAbtNu+WKW3UnQIvEm5FK7cB/kNn3e71b/uz0EpLGVBjCsdZtz5UmyLEyjHA6KnVSTSUmQ9ynbUsFjqkO8sm1I3RslR6KEmVLGDRRf0/kONY6i0PbGWMz0PPeWPzPa6cmOg9yJmRqqCDTRVHKkUnQ+HXUY4oSwzNLMFHM3orIACtMjA2oZEPw5l9eJP5p1XOr3rVN4wKmKMIhHMEJeHAGNbiCOjSAwB08wjO8OInz5Lw6b9PWgjOb2Yc/cD5+AGXTkqw=</latexit><latexit sha1_base64="Nc0DXje6uYB+/0fHlXL99yCq0no=">AAAB7XicbVC7SgNBFL0bXzG+ooKNzWAQrMKujRYWARvLCGYTSNYwO5lNxszODjOzyrLkH2wsFNHS/7HzA/wPJ49CEw9cOJxzL/feE0rOtHHdL6ewtLyyulZcL21sbm3vlHf3fJ2kitAGSXiiWiHWlDNBG4YZTltSURyHnDbD4eXYb95TpVkibkwmaRDjvmARI9hYye/IAbtNu+WKW3UnQIvEm5FK7cB/kNn3e71b/uz0EpLGVBjCsdZtz5UmyLEyjHA6KnVSTSUmQ9ynbUsFjqkO8sm1I3RslR6KEmVLGDRRf0/kONY6i0PbGWMz0PPeWPzPa6cmOg9yJmRqqCDTRVHKkUnQ+HXUY4oSwzNLMFHM3orIACtMjA2oZEPw5l9eJP5p1XOr3rVN4wKmKMIhHMEJeHAGNbiCOjSAwB08wjO8OInz5Lw6b9PWgjOb2Yc/cD5+AGXTkqw=</latexit><latexit sha1_base64="S5XnA5iYIAgqxiI+i0ptSwAiKP4=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5stLAI2FhGMB+QnGFvM5es2ds9dveEEPIfbCwUsfX/2Plv3CRXaOKDgcd7M8zMi1LBjfX9b6+wtr6xuVXcLu3s7u0flA+PmkZlmmGDKaF0O6IGBZfYsNwKbKcaaRIJbEWjm5nfekJtuJL3dpximNCB5DFn1Dqp2U2H/CHrlSt+1Z+DrJIgJxXIUe+Vv7p9xbIEpWWCGtMJ/NSGE6otZwKnpW5mMKVsRAfYcVTSBE04mV87JWdO6ZNYaVfSkrn6e2JCE2PGSeQ6E2qHZtmbif95nczGV+GEyzSzKNliUZwJYhWZvU76XCOzYuwIZZq7WwkbUk2ZdQGVXAjB8surpHlRDfxqcOdXatd5HEU4gVM4hwAuoQa3UIcGMHiEZ3iFN095L96797FoLXj5zDH8gff5A53Djxw=</latexit>

⇢v�u
<latexit sha1_base64="8QVocR3pGD0i/QL+G1OhPZDl9fE=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWz3TRLN9mwO6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUEquAbH+bZKK6tr6xvlzcrW9s7unr1/0NIyU5Q1qRRSdQKimeAJawIHwTqpYiQOBGsHw5up3x4xpblM7mGcMj8mg4SHnBIwUs8+8lQkH/KRp/ggAqKUfMTZpGdXnZozA14mbkGqqECjZ395fUmzmCVABdG66zop+DlRwKlgk4qXaZYSOiQD1jU0ITHTfj47f4JPjdLHoVSmEsAz9fdETmKtx3FgOmMCkV70puJ/XjeD8MrPeZJmwBI6XxRmAoPE0yxwnytGQYwNIVRxcyumEVGEgkmsYkJwF19eJq3zmuvU3LuLav26iKOMjtEJOkMuukR1dIsaqIkoytEzekVv1pP1Yr1bH/PWklXMHKI/sD5/AAdVlig=</latexit><latexit sha1_base64="8QVocR3pGD0i/QL+G1OhPZDl9fE=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWz3TRLN9mwO6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUEquAbH+bZKK6tr6xvlzcrW9s7unr1/0NIyU5Q1qRRSdQKimeAJawIHwTqpYiQOBGsHw5up3x4xpblM7mGcMj8mg4SHnBIwUs8+8lQkH/KRp/ggAqKUfMTZpGdXnZozA14mbkGqqECjZ395fUmzmCVABdG66zop+DlRwKlgk4qXaZYSOiQD1jU0ITHTfj47f4JPjdLHoVSmEsAz9fdETmKtx3FgOmMCkV70puJ/XjeD8MrPeZJmwBI6XxRmAoPE0yxwnytGQYwNIVRxcyumEVGEgkmsYkJwF19eJq3zmuvU3LuLav26iKOMjtEJOkMuukR1dIsaqIkoytEzekVv1pP1Yr1bH/PWklXMHKI/sD5/AAdVlig=</latexit><latexit sha1_base64="8QVocR3pGD0i/QL+G1OhPZDl9fE=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWz3TRLN9mwO6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUEquAbH+bZKK6tr6xvlzcrW9s7unr1/0NIyU5Q1qRRSdQKimeAJawIHwTqpYiQOBGsHw5up3x4xpblM7mGcMj8mg4SHnBIwUs8+8lQkH/KRp/ggAqKUfMTZpGdXnZozA14mbkGqqECjZ395fUmzmCVABdG66zop+DlRwKlgk4qXaZYSOiQD1jU0ITHTfj47f4JPjdLHoVSmEsAz9fdETmKtx3FgOmMCkV70puJ/XjeD8MrPeZJmwBI6XxRmAoPE0yxwnytGQYwNIVRxcyumEVGEgkmsYkJwF19eJq3zmuvU3LuLav26iKOMjtEJOkMuukR1dIsaqIkoytEzekVv1pP1Yr1bH/PWklXMHKI/sD5/AAdVlig=</latexit><latexit sha1_base64="8QVocR3pGD0i/QL+G1OhPZDl9fE=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJVEBD0WvXisYD+giWWz3TRLN9mwO6mUUPCvePGgiFd/hzf/jds2B219MPB4b4aZeUEquAbH+bZKK6tr6xvlzcrW9s7unr1/0NIyU5Q1qRRSdQKimeAJawIHwTqpYiQOBGsHw5up3x4xpblM7mGcMj8mg4SHnBIwUs8+8lQkH/KRp/ggAqKUfMTZpGdXnZozA14mbkGqqECjZ395fUmzmCVABdG66zop+DlRwKlgk4qXaZYSOiQD1jU0ITHTfj47f4JPjdLHoVSmEsAz9fdETmKtx3FgOmMCkV70puJ/XjeD8MrPeZJmwBI6XxRmAoPE0yxwnytGQYwNIVRxcyumEVGEgkmsYkJwF19eJq3zmuvU3LuLav26iKOMjtEJOkMuukR1dIsaqIkoytEzekVv1pP1Yr1bH/PWklXMHKI/sD5/AAdVlig=</latexit>
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(f) Deep set

Figure 4: Di↵erent internal GN block configurations. See Section 3.2 for details on the notation,
and Section 4 for details about each variant. (a) A full GN predicts node, edge, and global output
attributes based on incoming node, edge, and global attributes. (b) An independent, recurrent
update block takes input and hidden graphs, and the � functions are RNNs (Sanchez-Gonzalez
et al., 2018). (c) An MPNN (Gilmer et al., 2017) predicts node, edge, and global output attributes
based on incoming node, edge, and global attributes. Note that the global prediction does not
include aggregated edges. (d) A NLNN (Wang et al., 2018c) only predicts node output attributes.
(e) A relation network (Raposo et al., 2017; Santoro et al., 2017) only uses the edge predictions
to predict global attributes. (f) A Deep Set (Zaheer et al., 2017) bypasses the edge update and
predicts updated global attributes.

4.2.1 Message-passing neural network (MPNN)

Gilmer et al. (2017)’s MPNN generalizes a number of previous architectures and can be translated
naturally into the GN formalism. Following the MPNN paper’s terminology (see Gilmer et al.
(2017), pages 2-4):

� the message function, Mt, plays the role of the GN’s �e, but does not take u as input,
� elementwise summation is used for the GN’s ⇢e!v,
� the update function, Ut, plays the role of the GN’s �v,
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View data as  
graph based on geometry 
& use message passing

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Learn relations from data 
using attention

Qu, Gouskos 1902.08570; Qu et al 2202.03772; Gong et al  2201.08187; Shlomi et al 2007.13681; 
Bogatskiy et al 2211.00454;
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Impact of pre-training

H. Qu et al., 2202,03772

Top Quark Tagging
Constrain functions to be 
equivariant under the Lorentz  
group

EQUIVARIANT NEURAL NETWORKS

Why equivariance?

Symmetries are important

Symmetries are hard to learn

Symmetry group
    operation   

Neural network
  operation

What are equivariant neural networks?

Explicitly injecting 
physics knowledge 
yields more efficient 
learning

Qu, Gouskos 1902.08570; Qu et al 2202.03772; Gong et al  2201.08187; Shlomi et al 2007.13681; 
Bogatskiy et al 2211.00454; Brehmer et al 2411.00446
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What if we combine pre-training and equivariance?
Top Quark Tagging

Fine tuning: 
Pre-train on one dataset 
and recycle weights  
for training on new data

Yields substantial 
boost in performance 
(for transformer-based 
models)

Can combine with  
equivariance
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What if we combine pre-training and equivariance?
Top Quark Tagging

• Usefulness of open 
benchmark data


• Good representation 
of data pays off


• Transformers + 
physics rules


• Boost by fine-tuning 
across datsets


Important issues on 
application side


• Domain shift


• Calibrateable


• Compute cost


Modern tagging algorithms are widely used in 
searches for new particles




End of Part I.
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What if we combine pre-training and equivariance?

Reminder: Space-time 
described by Lorentz group 
(rotations, boosts)

Symmetries

2411.00446

SciPost Physics Submission

The first two terms represent a scalar function of the 4-momenta, while the last is a pseu-
doscalar function. To calculate this amplitude in the spacetime algebra, we first embed each
4-momentum into a multivector x i = pi

µ�
µ. Using these multivectors as inputs, the squared

amplitude can be obtained through a sequence of algebra operations. The result of this calcu-
lation will also be a multivector, namely

|M|2 = xS1+ x P�5 with xS1= |ME |2 + |MO|2

x P�5 = 2 Re
�
M⇤EMO
�

. (8)

The geometric algebra explicitly separates the scalar and pseudoscalar components of the
squared amplitude, highlighting their respective geometric significance.

The geometric algebra also allows us to perform operations on spacetime objects. Lorentz
transformations act as

⇤v(x) = vx v�1 , (9)

where v is a multivector representing an element of the Lorentz group acting on the alge-
bra element x , and v�1 representings the corresponding inverse. The representation v of a
Lorentz transformation is built by a simple rule: a multivector encoding an object that is in-
variant under a Lorentz transformation will also represent the transformation itself. This gives
a dual interpretation to spacetime algebra elements as, both, geometric objects and Lorentz
transformations.

For instance, boosts along the z-axis are generated by �03, which also represents a plane
in time vs. z-direction. The multivector for such a boost with rapidity ! reads

v = e!�
03
= 1 cosh!+�03 sinh! . (10)

If we apply this boost to a particle moving in z-direction, x = E�0 + pz�
3, the transformation

in Eq. (9) gives us

vx v�1 = (E cosh!� pz sinh!)�0 + (pz cosh!� E sinh!)�3 . (11)

This is exactly what we expect from the Lorentz boost. The algebra representation allows us
to apply this boost on any object in the geometric algebra, not just vectors. From Eq. (9) and
the properties of the geometric product, we see that Lorentz transformations will never mix
grades. Each algebra grade transforms under a separate sub-representation of the Lorentz
group.

The main limitation of the geometric algebra approach is that the spacetime algebra G1,3
covers only a limited range of Lorentz tensor representations. For instance, this formalism
can not represent symmetric rank-2 tensors. For most LHC applications, though, one does not
encounter higher-order tensor representations as inputs or outputs, so this is not a substantial
limitation. Whether higher-order tensors might be needed for internal representations within
a network is an open question [37].

2.2 Constructing a Lorentz-Equivariant Architecture

Based on the multivector representation, we now construct the corresponding transformer
network L-GATr. It is equivariant under Lorentz group transformations ⇤

L-GATr
Ä
⇤(x)
ä
= ⇤
Ä
L-GATr(x)
ä

. (12)

We take advantage of the fact that multivector grades form sub-representations of the Lorentz
group, i.e. all multivector components of the same grade transform equally under all network
operations, whereas different grades transform differently [33,35].
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elements of the Dirac algebra used to describe spinor interactions. Both algebras are closely
related, the only difference being that the spacetime algebra is defined over R4, whereas the
Dirac algebra is defined over C4. This prescription fully recovers all the algebra properties
presented in Ref. [35].

We now construct new elements of the algebra using the geometric product defined in
Eq. (1). All higher-order elements can be characterized as antisymmetric products of �µ. We
organize them in grades, defined by the number of �µ needed to express them. For instance,
the antisymmetric tensor �µ⌫ is generated from the geometric product of two �µ and conse-
quently has grade two,

�µ�⌫ =
{�µ,�⌫}

2
+
[�µ,�⌫]

2
= gµ⌫ +�µ⌫ . (3)

Following Eq. (1), �µ⌫ is a bivector, which can be interpreted as the plane opened by µ and
⌫ in Minkowski space. We see that the symmetric term in the geometric product reduces the
grade, while the antisymmetric term increases it. The whole product �µ�⌫ is a sum of grade
zero (scalar) and grade two. A generic element of the algebra that mixes grade information is
called a multivector.

Moving on, the geometric product of three vectors �µ�⌫�⇢ contains the antisymmetric
tensor ✏µ⌫⇢��µ�⌫�⇢ as a trivector or axial vector. The product of all four �µ leads us to the
pseudoscalar

�5 = �0�1�2�3 ⌘ 1
4!
✏µ⌫⇢��

µ�⌫�⇢��. (4)

Pseudoscalars act as parity reversal operations on any object and can be used to write axial
vectors as �µ�5. The missing factor i compared to the usual definition of �5 indicates the slight
difference between the complex Dirac algebra and our real spacetime algebra.

Geometric products with more than four �µ can be reduced to lower-grade structures.
Combining all these elements, we can express any multivector of the algebra as†

x = xS 1+ xV
µ �

µ + xB
µ⌫ �

µ⌫ + xA
µ �
µ�5 + x P �5 with

0
BBBB@

xS

xV
µ

xB
µ⌫

xA
µ

x P

1
CCCCA
2 R16 . (5)

In this representation, we only include the nonzero and independent entries in the antisym-
metric bivector. Multivectors can be used to represent both spacetime objects and Lorentz
transformations. For instance, particles are characterized by their type (i.e. particle identifica-
tion, or PID) and their 4-momentum pµ,

xS = PID xV
µ = pµ x T

µ⌫ = xA
µ = x P = 0 . (6)

Using this convenient representation, the spacetime algebra naturally structures relevant
objects like parity-violating transition amplitudes. The matrix element M is a function of 4-
momenta and can be decomposed into parity-even and parity-odd terms before it gets squared,

|M|2 = |ME |2 + |MO|2 + 2 Re
�
M⇤EMO
�

. (7)

†Some of us are reminded of supersymmetric multiplets, which also combine fields with different transformation
properties into a graded structure. In that case, the elements of the multiplets are defined by a closing under super-
symmetry transformations with spinor-like generators and an (anti-)commutator-defined algebra. In superspace,
the elements of the multiplets can be extracted using a finite expansion in Grassmann variables. One difference
between superfields and our multivectors is that in supersymmetry, it is known how to incorporate all irreducible
representations relevant for phenomenology (e.g. vector and chiral superfields), while for our multivectors, it is
not obvious how to extend the space to higher-rank representations.
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Layer type Transformer L-GATr

Linear(x) vx + w
P4

k=0 vkhxik
Attention(q, k, v)ic

Pnt
j=1 Softmax j

✓Pnc
c0=1

qic0kjc0pnc

◆
vjc
Pnt

j=1 Softmax j

✓Pnc
c0=1

hqic0 , kjc0 ip
16nc

◆
vjc

LayerNorm(x) x
ï

1
nc

Pnc
c=1 x2

c + ✏
ò�1/2

x
ï

1
nc

Pnc
c=1

P4
k=0

���
¨
hxcik, hxcik
∂���+ ✏
ò�1/2

Activation(x) GELU(x) GELU(hxi0)x
GP(x , y) � x y

Table 1: Comparison of transformer layers and L-GATr layers. The arguments
x , y, q, k, v are scalars for the transformer, and multivectors for L-GATr. The second
term in the L-GATr linear layer is optional and breaks the Lorentz group down to its
fully connected subgroup.

• Activation functions applied directly on the multivectors break the equivariance. We em-
ploy scalar-gated activation functions [33], where the nonlinearity only acts on the scalar
component of the multivector hxi0. Specifically, we use the scalar-gated GELU [40] ac-
tivation function

Activation(x) = GELU(hxi0) x . (18)

• Finally, the geometric algebra allows for another source of nonlinearity, the geometric
product

GP(x , y) = x y with GP(vx v�1, v yv�1) = vGP(x , y)v�1 , (19)

which is equivariant itself.

These operations strictly generalize standard scalar transformers to the multivector repre-
sentation, as illustrated in Table 1. We supplement the list of multivector channels with extra
scalar channels to allow a smooth transition to standard transformers that solely rely on scalar
channels. Moreover, it provides a handle to feed large amounts of scalar information to the
network without overloading the multivector channels.

2.3 Breaking Lorentz Symmetry

In many LHC contexts, Lorentz symmetry is only partially preserved. L-GATr can apply partial
symmetry breaking in a tunable manner by including reference multivectors as additional
inputs. Any network operation that involves such a reference vector will violate equivariance,
breaking the symmetry group to a subgroup where the reference direction is fixed. This defines
a partial symmetry breaking without altering the structure of the network. The network always
has the option to tune out the reference vectors when they are not needed. Reference vectors
are appended for each L-GATr input x in the same way, either as extra tokens, or as extra
channels within each token.

For instance, the LHC beam direction breaks the Lorentz group to the subgroup of rotations
around and boosts along the beam axis [10, 14, 41, 42]. The natural reference vector is this
beam direction, which can be either implemented as two vectors xV

± = (0, 0,0,±1), or one
bivector representing the x � y plane, xB

12 = 1. We find similar performance for both choices.
Generally, we can break the Lorentz group to the subgroup of rotations in three-dimensional
space SO(3) using the reference multivector xV = (1,0, 0,0).

7

Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3
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Figure 17: Sum of the 25 signal-plus-background model fits to the event classes in both the 7 and
8 TeV datasets, together with the data binned as a function of mgg. The 1s and 2s uncertainty
bands shown for the background component of the fit are computed from the fit uncertainty
in the background yield in bins corresponding to those used to display the data. These bands
do not contain the Poisson uncertainty that must be included when the full uncertainty in the
number of background events in any given mass range is estimated. The lower plot shows the
residual data after subtracting the fitted background component.
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Figure 18: Local p-values as a function of mH for the 7 TeV, 8 TeV, and the combined dataset.
The values of the expected significance, calculated using the background expectation obtained
from the signal-plus-background fit, are shown as dashed lines.
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Figure 19: Diphoton mass spectrum weighted by the ratio S/(S + B) in each event class, to-
gether with the background subtracted weighted mass spectrum.

Table 5: Values of the best-fit signal strength, µ̂, when mH is treated as an unconstrained pa-
rameter, for the 7 TeV, 8 TeV, and combined datasets. The corresponding best-fit value of mH,
bmH, is also given.

µ̂ bmH (GeV)
7 TeV 2.22+0.62

�0.55 124.2
8 TeV 0.90+0.26

�0.23 124.9
Combined 1.14+0.26

�0.23 124.7

section times the relevant branching fractions, relative to the SM expectation. In Fig. 20 the
combined best-fit signal strength, µ̂, is shown as a function of the Higgs boson mass hypothesis,
both for the standard analysis (left) and for the cut-based analysis (right). The two analyses
agree well across the entire mass range. In addition to the signal around 125 GeV, both analyses
see a small upward fluctuation at 150 GeV, which is found to have a maximum local significance
of just over 2 s at mH = 151 GeV—slightly beyond the mass range of our analysis.

The best-fit signal strength for the main analysis, when the value of mH is treated as an un-
constrained parameter in the fit, is µ̂ = 1.14+0.26

�0.23, with the corresponding best-fit mass being
bmH = 124.7 GeV. The expected uncertainties in the best-fit signal strength, at this mass, are
+0.24 and �0.22. The values of the best-fit signal strength, derived separately for the 7 and
8 TeV datasets, are listed in Table 5. For the cut-based analysis the corresponding value is
µ̂ = 1.29+0.29

�0.26 at bmH = 124.6 GeV, and for the sideband background model analysis the value
measured is µ̂ = 1.06+0.26

�0.23 at bmH = 124.7 GeV. These values are shown in Table 6 together with
the expected uncertainty, and the corresponding values for the main analysis.

The uncertainty in the signal strength may be separated into statistical and systematic con-
tributions, with the latter further divided into those having, or not, a theoretical origin: µ̂ =

How to discover a new particle?

Di-Photon invariant mass
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according to purity, 
relative amount of signal 
using simple ML

Weight events according 
to excepted purity of 
category



11.1 Significance of the signal and its strength 41

0

0.5

1

1.5

2

2.5

3

3.5

4
 (7 TeV)-1 (8 TeV) + 5.1 fb-119.7 fb

CMS
γγ →H 

0.34 GeV ±  = 124.70Hm
0.23−
0.26+ 1.14=µ

310×

 (GeV)γγm
110 115 120 125 130 135 140 145 150

-100

0

100

200
B component subtracted

S/
(S

+B
) w

ei
gh

te
d 

ev
en

ts
 / 

G
eV S/(S+B) weighted sum

Data

S+B fits (weighted sum)
B component
σ1±
σ2±

Figure 19: Diphoton mass spectrum weighted by the ratio S/(S + B) in each event class, to-
gether with the background subtracted weighted mass spectrum.

Table 5: Values of the best-fit signal strength, µ̂, when mH is treated as an unconstrained pa-
rameter, for the 7 TeV, 8 TeV, and combined datasets. The corresponding best-fit value of mH,
bmH, is also given.

µ̂ bmH (GeV)
7 TeV 2.22+0.62

�0.55 124.2
8 TeV 0.90+0.26

�0.23 124.9
Combined 1.14+0.26

�0.23 124.7

section times the relevant branching fractions, relative to the SM expectation. In Fig. 20 the
combined best-fit signal strength, µ̂, is shown as a function of the Higgs boson mass hypothesis,
both for the standard analysis (left) and for the cut-based analysis (right). The two analyses
agree well across the entire mass range. In addition to the signal around 125 GeV, both analyses
see a small upward fluctuation at 150 GeV, which is found to have a maximum local significance
of just over 2 s at mH = 151 GeV—slightly beyond the mass range of our analysis.

The best-fit signal strength for the main analysis, when the value of mH is treated as an un-
constrained parameter in the fit, is µ̂ = 1.14+0.26

�0.23, with the corresponding best-fit mass being
bmH = 124.7 GeV. The expected uncertainties in the best-fit signal strength, at this mass, are
+0.24 and �0.22. The values of the best-fit signal strength, derived separately for the 7 and
8 TeV datasets, are listed in Table 5. For the cut-based analysis the corresponding value is
µ̂ = 1.29+0.29

�0.26 at bmH = 124.6 GeV, and for the sideband background model analysis the value
measured is µ̂ = 1.06+0.26

�0.23 at bmH = 124.7 GeV. These values are shown in Table 6 together with
the expected uncertainty, and the corresponding values for the main analysis.

The uncertainty in the signal strength may be separated into statistical and systematic con-
tributions, with the latter further divided into those having, or not, a theoretical origin: µ̂ =
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What is an anomaly?



Point anomaly

• Outliers: Datapoints far away from regular 
distribution


• Examples:

• Detector malfunctions

• Background-free search



And now?



Color (Mass)

Co
un

t
Group anomaly

80



Color (Mass)

Co
un

t
Group anomaly

• Individual examples not anomalous, 
but interesting collective behaviour


• Examples:


• New physics searches, e.g. resonances


• Excess in time series
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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1. Introduction 1

1 Introduction
Many models of physics beyond the standard model (BSM) predict the existence of new parti-
cles with hadronic decays. One of the most generic searches for new physics at particle colliders
is therefore a search for heavy resonances decaying into two jets [1–8]. This search is sensitive
to a wide range of signals, but is dominated by an overwhelming background from Quantum
Chromodynamics (QCD) multijet production. To increase the sensitivity to specific decays,
dedicated searches have been performed that require the jets to have a substructure and flavor
content compatible with vector bosons [9–11], Higgs bosons [12, 13], b quarks [14–17], or top
quarks [18–20]. These searches are able to exploit the expected jet content of the targeted signal
to reduce the standard model background and increase the search sensitivity, but as a result are
no longer generic. These dedicated searches also do not cover many possible signals, that may
exist below the sensitivity of the inclusive dijet search, which motivates a new approach tar-
geting a broader set of signals. To get the best combination of both sensitivity and generality,
new types of model-agnostic searches based on anomaly detection have been proposed [21],
and recently also performed at colliders in dijet topologies [22–24].

In this analysis, we present a machine learning (ML)-driven, model-agnostic search for a narrow-
width heavy resonance A with TeV-scale mass decaying into two other resonances, B and C, in
a dijet final state. The B and C particles are assumed to decay hadronically and their masses
to be significantly smaller than the A’s mass. The mass hierarchy results in the B and C par-
ticles being produced with high Lorentz boost, such that their decay products are contained
in large-radius jets. This is illustrated in Figure 1. Five different methods are used to design
discriminating variables that can be used to identify large-radius jets with a non-QCD-like sub-
structure and suppress the background rate by several orders of magnitude. These methods
are consequently used to search for a resonance which can be identified as a bump in the di-
jet mass spectrum on top of the dominant QCD background events. These methods are able
to significantly enhance the sensitivity to a much wider range of signal models than tradi-
tional substructure techniques. While all methods employ ML techniques and aim to identify
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Figure 1: Production in pp collisions of a dijet resonance, A, which decays to two resonances
B and C, that in turn each decay to a jet with anomalous substructure arising from multiple
subjets.

anomalous jets, they differ in the substructure information utilized, aspects of their learning
setup, and model architecture. Four of these methods proceed in a fully model-agnostic fash-
ion, without any signal simulation, and only make use of data events in the training of their
anomaly detection model. The fifth method is a hybrid approach and utilizes signal simulation

Assumptions, revisited

We don’t know the 
mass and type of 
the resonant 
particle

And we don’t know 
what particles it 
decays to 
 
(for now assume it 
decays into two 
Jets)
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 � significance values.

• Both Cathode and Anode need to learn the
smoothly varying background. However, Anode
must also learn the sharply peaked distributions in
x where the signal is localized (the “inner” den-
sity estimator trained on the SR). This results in
a degradation of the Anode anomaly detection
method and worse performance than Cathode and
CWoLa Hunting.

• As for how Cathode is able to outperform CWoLa
Hunting, there are two reasons. Firstly, there is a
correlation at the percent level between the cho-

sen features in x within the original LHCO R&D
dataset with the search variable (mJJ). Since
CWoLa Hunting is very sensitive to correlations,
this small correlation is su�cient to degrade the
performance compared to that of Cathode. De-
tails of the correlation study can be found in
Sec. IVC. Secondly, CWoLa Hunting is limited to
only using the events within the sidebands to train
the classifier (approximately 65,000 events), while
Cathode is able to oversample events from the
background model (here 200,000 events are used).
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work on data?

Actual dataGenerative  
model output
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Figure 3: The dijet invariant mass spectrum and resulting background fit to the data for
VAE-QR (top left) CWoLa Hunting (top middle), TNT (top right), CATHODE (bottom left),
CATHODE-b (bottom middle) and QUAK (bottom right). The shapes of example signals are
shown along with the VAE-QR mjj distribution. Though not shown, these shapes are consistent
for the other methods as well. For all methods besides the VAE-QR, separate selections were
applied for different signal mass hypotheses and the resulting mass spectra were fit separately.
The figures therefore show the fitted and observed dijet mass distribution in the signal win-
dow of each selection, which results in a discontinuous distribution. The results in the A signal
regions are shown for the weakly supervised and QUAK methods.

Fully train CATHODE on data 
 
Select top 1% most anomalous events,  
perform bump-hunt  
 
No signal-like outlier: set limits
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1 Introduction
Many models of physics beyond the standard model (BSM) predict the existence of new parti-
cles with hadronic decays. One of the most generic searches for new physics at particle colliders
is therefore a search for heavy resonances decaying into two jets [1–8]. This search is sensitive
to a wide range of signals, but is dominated by an overwhelming background from Quantum
Chromodynamics (QCD) multijet production. To increase the sensitivity to specific decays,
dedicated searches have been performed that require the jets to have a substructure and flavor
content compatible with vector bosons [9–11], Higgs bosons [12, 13], b quarks [14–17], or top
quarks [18–20]. These searches are able to exploit the expected jet content of the targeted signal
to reduce the standard model background and increase the search sensitivity, but as a result are
no longer generic. These dedicated searches also do not cover many possible signals, that may
exist below the sensitivity of the inclusive dijet search, which motivates a new approach tar-
geting a broader set of signals. To get the best combination of both sensitivity and generality,
new types of model-agnostic searches based on anomaly detection have been proposed [21],
and recently also performed at colliders in dijet topologies [22–24].

In this analysis, we present a machine learning (ML)-driven, model-agnostic search for a narrow-
width heavy resonance A with TeV-scale mass decaying into two other resonances, B and C, in
a dijet final state. The B and C particles are assumed to decay hadronically and their masses
to be significantly smaller than the A’s mass. The mass hierarchy results in the B and C par-
ticles being produced with high Lorentz boost, such that their decay products are contained
in large-radius jets. This is illustrated in Figure 1. Five different methods are used to design
discriminating variables that can be used to identify large-radius jets with a non-QCD-like sub-
structure and suppress the background rate by several orders of magnitude. These methods
are consequently used to search for a resonance which can be identified as a bump in the di-
jet mass spectrum on top of the dominant QCD background events. These methods are able
to significantly enhance the sensitivity to a much wider range of signal models than tradi-
tional substructure techniques. While all methods employ ML techniques and aim to identify
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Figure 1: Production in pp collisions of a dijet resonance, A, which decays to two resonances
B and C, that in turn each decay to a jet with anomalous substructure arising from multiple
subjets.

anomalous jets, they differ in the substructure information utilized, aspects of their learning
setup, and model architecture. Four of these methods proceed in a fully model-agnostic fash-
ion, without any signal simulation, and only make use of data events in the training of their
anomaly detection model. The fifth method is a hybrid approach and utilizes signal simulation
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anomalous jets, they differ in the substructure information utilized, aspects of their learning
setup, and model architecture. Four of these methods proceed in a fully model-agnostic fash-
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Figure 1: Left: numbers of constituents and of non-zero pixels for tops and QCD jets, 400,000
jets in total. Right: ROC curves for the image-based autoencoder identifying anomalous top
jets for di↵erent bottleneck sizes.

for a collider energy of 14 TeV. For the QCD sample we do not distinguish between hard
quarks and gluons. While the simulation used for these studies did not include e↵ects of
multi-parton interaction and pile-up, this is not a fundamental limitation of the proposed
approach. Autoencoders can also be applied to the constituents of a jet after applying stan-
dard experimental techniques for the removal of pile-up [31]. A combination with grooming
algorithms is possible as well, but would potentially limit the sensitivity as grooming makes
explicit assumptions on how a shower ought to unfold.

Similarly, no detailed detector simulation was included. We expect the autoencoder to
learn novel jet-shape variables from the distributions of constituents. There is no a-priori
reason why these jet shapes would su↵er from larger e↵ects due to the detector simulation than
widely used variables like groomed mass, n-subjettiness or energy correlation functions. For
the practical application of the autoencoder we foresee training on data, making this technique
even less subject to di↵erences between data and simulation than ordinary approaches.

The substructure containers are fat anti-kT jets [32] with distance parameter R = 0.8,
defined by FastJet3.1.3 [33]. They are required to have a transverse momentum in the
range

pT,j = 550 ... 650 GeV . (1)

In addition they must be central, |⌘j | < 2. For all signal jets we require both the truth-level
partonic top and its decay products to be within the area of the fat jet. The inputs of the
subjet analysis are particle flow objects [34] from the Delphes E-flow. In the left panel of
Fig. 1 we show the number of particle flow constituents for signal and background jets. The
main feature is that already based on the larger number of constituents we could identify the
hadronic top decays.

Following Ref. [12] we employ an improved pre-processing of the jet images, most notably
applied before pixelization. This approach is directly motivated by the particle flow approach,
which combines the coarse calorimeter information with the high-resolution tracker and pro-
vides us with a set of high-resolution 4-vectors. The center of the image is not defined by the

4
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• Potential issue of models that only use pBackground (e.g. autoencoders)
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Comments on Anomalies

• Systematic anomaly searches as fail-safe strategy to signature based 
searches


• Trade off between sensitivity and breadth


• Weak supervision as useful technique beyond anomalies
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Figure 4: Illustration of the reverse di↵usion process. Starting from the initial

noise. The color scale corresponds to the point energy.

on additional quantities beyond multiplicity N and shower energy E.

In principle, one could add additional physically relevant quantities such as

the total visible energy, the center of gravity, or the shower start as explicit

conditioning features. However, such a choice of observables might bias the

generated showers. Instead, we opt for learning an additional global context vector

z to capture any other relevant distributions via an additional encoder.

This encoding is learned by an Equivariant Point Cloud (EPiC) Encoder

using three EPiC layers introduced in Ref. [27] with a hidden dimensionality of

128. The EPiC Encoder is conditioned on E and N and learns to encode the

original Geant4 point cloud into two latent space vectors µ and �. Similar to

the encoder in a VAE, µ and � are regularised towards a Gaussian distribution

with the Kullback-Leibler divergence (KLD) loss and the latent space z is sampled

with the reparametrization trick [44]. The KLD loss is given by:

LKLD = DKL(Z||N (0, 1)) = �
1

2

�
1 + log(�2) � µ2

� �2
�
, (6)

with the latent variables sampled via z ⇠ Z = N (µ,�2). We set the size of z to

256, the default in Ref. [32].

as fixed grid as point cloud 
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Generative Adversarial Networks

Maps random noise to 
realistic examples

Provides feedback on 
quality of examples

Generative Adversarial 
Networks (GANs) 
consist of 2 networks



Generative Adversarial Networks

Training objective: 
Binary cross entropy

True examples Fake examples

14
06

.2
66

1



Generative Adversarial Networks

Training objective: 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Generative Adversarial Networks

Training objective: 
Binary cross entropy Minimise for generator
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Generative Adversarial Networks

At (Nash) equilibrium:  
Generator produces realistic examples 
Discriminator is maximally confused

Training objective: 
Binary cross entropy
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Generative Adversarial Networks

For generation: 
Sample from Generator 
Discard Discriminator

Training objective: 
Binary cross entropy
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Architecture:


• Low complexity, fast and adaptable 

Learning:


• Unstable training 


• Matching of generator/discriminator 
(vanishing gradients)


• Mode collapse


• Loss function not interpretable


Maturity:


• Well established,  
many variants and extensions


Comments on GANs
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Autoencoder

Two networks 
Encoder: data → latent space

Decoder: latent space → data
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Autoencoder

Two networks 
Encoder: data → latent space

Decoder: latent space → data

Training objective: 
Minimise input/output difference
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f(x)
<latexit sha1_base64="Byif/cWtH5QoRUXoVy/lKlOAX8g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iVoB6DXjxGMA9IQpid9CZDZmeXmVkxLPkILx4U8er3ePNvnCR70MSChqKqm+4uPxZcG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnj25nfekSleSQfzCTGXkiHkgecUWOl1rAUlJ7K5X6h6FbcOcgq8TJShAz1fuGrO4hYEqI0TFCtO54bm15KleFM4DTfTTTGlI3pEDuWShqi7qXzc6fk3CoDEkTKljRkrv6eSGmo9ST0bWdIzUgvezPxP6+TmOC6l3IZJwYlWywKEkFMRGa/kwFXyIyYWEKZ4vZWwkZUUWZsQnkbgrf88ippXlS8y0r1vlqs3WRx5OAUzqAEHlxBDe6gDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP+WGOsA==</latexit>

g(f(x))



Autoencoder

Two networks 
Encoder: data → latent space

Decoder: latent space → data

Training objective: 
Minimise input/output difference

<latexit sha1_base64="obOE4SYMjo8llTEChlH5RTMyoXE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHShSUpRd0IRTcuXFSwD2hjmUwn7dDJJMxMpCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HixiVyra/jZXVtfWNzdxWfntnd2/fPDhsyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsbXU/91iMRkob8XiURcQM04NSnGCkt9czCLbyE1hieQt8aWONSqfRQ6ZlFu2zPAJeJk5EiyFDvmV/dfojjgHCFGZKy49iRclMkFMWMTPLdWJII4REakI6mHAVEuuns+Ak80Uof+qHQxRWcqb8nUhRImQSe7gyQGspFbyr+53Vi5V+4KeVRrAjH80V+zKAK4TQJ2KeCYMUSTRAWVN8K8RAJhJXOK69DcBZfXibNStk5K1fvqsXaVRZHDhyBY2ABB5yDGrgBddAAGCTgGbyCN+PJeDHejY9564qRzRTAHxifPy79keg=</latexit>

L = (x� f(g(x)))2

EncoderDecoder

Uses: 
Dimension reduction

Denoising 

Anomaly detection

Generation? 

<latexit sha1_base64="xpWGGCB8UMNYuYhQw+sjDuO8MJc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh5l7X6fb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHb02N2g==</latexit>

f(x)
<latexit sha1_base64="Byif/cWtH5QoRUXoVy/lKlOAX8g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iVoB6DXjxGMA9IQpid9CZDZmeXmVkxLPkILx4U8er3ePNvnCR70MSChqKqm+4uPxZcG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnj25nfekSleSQfzCTGXkiHkgecUWOl1rAUlJ7K5X6h6FbcOcgq8TJShAz1fuGrO4hYEqI0TFCtO54bm15KleFM4DTfTTTGlI3pEDuWShqi7qXzc6fk3CoDEkTKljRkrv6eSGmo9ST0bWdIzUgvezPxP6+TmOC6l3IZJwYlWywKEkFMRGa/kwFXyIyYWEKZ4vZWwkZUUWZsQnkbgrf88ippXlS8y0r1vlqs3WRx5OAUzqAEHlxBDe6gDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP+WGOsA==</latexit>

g(f(x))
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Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space


<latexit sha1_base64="JWVediLW7cbTRw6PQTQY2dhh3Sw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCC1JmpKgboejGZQX7gM5QMmmmDU0yQ5IR61D8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nuCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5TRYnEpIEjFsl2gBRhVJCGppqRdiwJ4gEjrWB4PfFb90QqGok7PYqJz1Ff0JBipI3UtQ/C0kMZXsKSx5MT6Cna56jctYtOxZkCLhI3I0WQod61v7xehBNOhMYMKdVxnVj7KZKaYkbGBS9RJEZ4iPqkY6hAnCg/nV4/hsdG6cEwkqaEhlP190SKuFIjHphOjvRAzXsT8T+vk+jwwk+piBNNBJ4tChMGdQQnUcAelQRrNjIEYUnNrRAPkERYm8AKJgR3/uVF0jytuGeV6m21WLvK4siDQ3AESsAF56AGbkAdNAAGj+AZvII368l6sd6tj1lrzspm9sEfWJ8/pQuTcA==</latexit>

f(x) = (µ,�)

13
12

.6
11

4



Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space

Sample before decoder


<latexit sha1_base64="JWVediLW7cbTRw6PQTQY2dhh3Sw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCC1JmpKgboejGZQX7gM5QMmmmDU0yQ5IR61D8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nuCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5TRYnEpIEjFsl2gBRhVJCGppqRdiwJ4gEjrWB4PfFb90QqGok7PYqJz1Ff0JBipI3UtQ/C0kMZXsKSx5MT6Cna56jctYtOxZkCLhI3I0WQod61v7xehBNOhMYMKdVxnVj7KZKaYkbGBS9RJEZ4iPqkY6hAnCg/nV4/hsdG6cEwkqaEhlP190SKuFIjHphOjvRAzXsT8T+vk+jwwk+piBNNBJ4tChMGdQQnUcAelQRrNjIEYUnNrRAPkERYm8AKJgR3/uVF0jytuGeV6m21WLvK4siDQ3AESsAF56AGbkAdNAAGj+AZvII368l6sd6tj1lrzspm9sEfWJ8/pQuTcA==</latexit>

f(x) = (µ,�)

<latexit sha1_base64="hXZ6vFbW8aFAFzxS6gPkPHiC9EY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRaxXsquFPUiFL14rGA/pC0lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2Fmnh9xpo3rfjuZpeWV1bXsem5jc2t7J7+7V9dhrAitkZCHquljTTmTtGaY4bQZKYqFz2nDH15P/MYDVZqF8s6MItoRuC9ZwAg2Vrp/PEaXqF98OunmC27JnQItEi8lBUhR7ea/2r2QxIJKQzjWuuW5kekkWBlGOB3n2rGmESZD3KctSyUWVHeS6cFjdGSVHgpCZUsaNFV/TyRYaD0Svu0U2Az0vDcR//NasQkuOgmTUWyoJLNFQcyRCdHke9RjihLDR5Zgopi9FZEBVpgYm1HOhuDNv7xI6qcl76xUvi0XKldpHFk4gEMoggfnUIEbqEINCAh4hld4c5Tz4rw7H7PWjJPO7MMfOJ8/4lSPKw==</latexit>

x0 = g(z)

<latexit sha1_base64="D4pI1Q09Gva3h/ci9qGwF0WbDzE=">AAACC3icbVDLSgNBEJyNrxhfUY9ehgQhgoRdCepFCHrQYwTzgGwIvZNJMmRmdpmZFeKSuxd/xYsHRbz6A978GyePgyYWNBRV3XR3BRFn2rjut5NaWl5ZXUuvZzY2t7Z3srt7NR3GitAqCXmoGgFoypmkVcMMp41IURABp/VgcDX26/dUaRbKOzOMaEtAT7IuI2Cs1M7mHvAF9gWYvhLJNcRaM5Cjgi/iY+xr1hNw1M7m3aI7AV4k3ozk0QyVdvbL74QkFlQawkHrpudGppWAMoxwOsr4saYRkAH0aNNSCYLqVjL5ZYQPrdLB3VDZkgZP1N8TCQithyKwneOr9bw3Fv/zmrHpnrcSJqPYUEmmi7oxxybE42BwhylKDB9aAkQxeysmfVBAjI0vY0Pw5l9eJLWTondaLN2W8uXLWRxpdIByqIA8dIbK6AZVUBUR9Iie0St6c56cF+fd+Zi2ppzZzD76A+fzB/PXml8=</latexit>

z = Gaussian(µ,�)
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Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space

Sample before decoder

Penalty so mean/std are close to unit Gaussian


<latexit sha1_base64="JWVediLW7cbTRw6PQTQY2dhh3Sw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCC1JmpKgboejGZQX7gM5QMmmmDU0yQ5IR61D8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nuCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5TRYnEpIEjFsl2gBRhVJCGppqRdiwJ4gEjrWB4PfFb90QqGok7PYqJz1Ff0JBipI3UtQ/C0kMZXsKSx5MT6Cna56jctYtOxZkCLhI3I0WQod61v7xehBNOhMYMKdVxnVj7KZKaYkbGBS9RJEZ4iPqkY6hAnCg/nV4/hsdG6cEwkqaEhlP190SKuFIjHphOjvRAzXsT8T+vk+jwwk+piBNNBJ4tChMGdQQnUcAelQRrNjIEYUnNrRAPkERYm8AKJgR3/uVF0jytuGeV6m21WLvK4siDQ3AESsAF56AGbkAdNAAGj+AZvII368l6sd6tj1lrzspm9sEfWJ8/pQuTcA==</latexit>

f(x) = (µ,�)
<latexit sha1_base64="D4pI1Q09Gva3h/ci9qGwF0WbDzE=">AAACC3icbVDLSgNBEJyNrxhfUY9ehgQhgoRdCepFCHrQYwTzgGwIvZNJMmRmdpmZFeKSuxd/xYsHRbz6A978GyePgyYWNBRV3XR3BRFn2rjut5NaWl5ZXUuvZzY2t7Z3srt7NR3GitAqCXmoGgFoypmkVcMMp41IURABp/VgcDX26/dUaRbKOzOMaEtAT7IuI2Cs1M7mHvAF9gWYvhLJNcRaM5Cjgi/iY+xr1hNw1M7m3aI7AV4k3ozk0QyVdvbL74QkFlQawkHrpudGppWAMoxwOsr4saYRkAH0aNNSCYLqVjL5ZYQPrdLB3VDZkgZP1N8TCQithyKwneOr9bw3Fv/zmrHpnrcSJqPYUEmmi7oxxybE42BwhylKDB9aAkQxeysmfVBAjI0vY0Pw5l9eJLWTondaLN2W8uXLWRxpdIByqIA8dIbK6AZVUBUR9Iie0St6c56cF+fd+Zi2ppzZzD76A+fzB/PXml8=</latexit>

z = Gaussian(µ,�)
<latexit sha1_base64="hXZ6vFbW8aFAFzxS6gPkPHiC9EY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRaxXsquFPUiFL14rGA/pC0lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2Fmnh9xpo3rfjuZpeWV1bXsem5jc2t7J7+7V9dhrAitkZCHquljTTmTtGaY4bQZKYqFz2nDH15P/MYDVZqF8s6MItoRuC9ZwAg2Vrp/PEaXqF98OunmC27JnQItEi8lBUhR7ea/2r2QxIJKQzjWuuW5kekkWBlGOB3n2rGmESZD3KctSyUWVHeS6cFjdGSVHgpCZUsaNFV/TyRYaD0Svu0U2Az0vDcR//NasQkuOgmTUWyoJLNFQcyRCdHke9RjihLDR5Zgopi9FZEBVpgYm1HOhuDNv7xI6qcl76xUvi0XKldpHFk4gEMoggfnUIEbqEINCAh4hld4c5Tz4rw7H7PWjJPO7MMfOJ8/4lSPKw==</latexit>

x0 = g(z)
<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
(Calculate KL-divergence  
between Gaussians)
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VAE Example
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http://towardsdatascience.com


135

Loss terms

Latent space of MNIST VAE


<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
Both terms

to
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m

Reconstruction Regularisation

http://towardsdatascience.com


Architecture:


• Low complexity, fast and adaptable


• Target: Maximise lower bound on likelihood 

Learning:


• Stable training 


• Average prediction → blurrier output


• Interpretable latent space 

Maturity:


• Well established,  
many variants and extensions


Comments on VAEs
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VAE

DCGAN



Normalising Flows
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Generative models

In auto-encoders, the decoder learns to ‘undo’ 
the encoder


Can we make this exact?



Generative models

Learn a diffeomorphism between data 
and latent-space


 

Choose latent space, e.g. standard 
normal distribution (normalising flow!)

Same dimension as data!
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Generative models

Learn a diffeomorphism between data 
and latent-space


Bijective, invertable 

f-1 is not a learned inversion, but 
exact inverse by construction



Generative models

Learn a diffeomorphism between data 
and latent-space


Bijective, invertable 

Learn likelihood of data

Take into account Jacobian 
determinant to evaluate 
probability density
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Generative models

2 challenges:

Invertible 

Easy-to-calculate Jacobean 


Take into account Jacobian 
determinant to evaluate 
probability density
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Coupling layers: Not the most expressive,  
but useful for illustration/understanding
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Simple (e.g. dense) 
neural networks


Coupling flows
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Calculating Jacobian determinant
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1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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The Jacobian matrix for this transformation J1 reads:

J1 =

 
@z1
@x1

@z1
@x2

@x2
@x1

@x2
@x2

!
(18.25)

=

✓
diag(exp(s2(x2)))

@z1
@x2

0 1

◆
. (18.26)

By construction, we arrived at a triangular matrix. This shape greatly
simplifies the calculation of the determinant:

detJ1 =
Y

exp(s2(x2)) = exp
⇣X

s2(x2)
⌘

. (18.27)

Here, the sum goes over the output dimension of s2. In the same way, the
Jacobian determinant for the second half of the transformation f2 can be
calculated to be

detJ2 = exp
⇣X

s1(z1)
⌘

. (18.28)

Combining these shows the simple form of the overall determinant of the
forward pass:

|detJf | = exp
⇣X

s2(x2) +
X

s1(z1)
⌘

= exp
⇣X

s(x)
⌘
. (18.29)

For the last equality, we simplified the notation to highlight that the deter-
minant is the exponential function applied to a sum of network predictions
s. When multiple such blocks are applied in sequence, due to (18.21), we
just gain additional terms in that sum.

To summarize, by splitting the input features into two parts we no-
tice how a transformation block, that is invertible and allows calculat-
ing the change in probability volume, can be constructed from standard
(i.e., non-invertible networks) and basic mathematical operations. When
more expressiveness is needed, multiple such blocks can be applied subse-
quently. An alternative construction based on autoregressive transforma-
tions is sketched in Example 18.6.

Example 18.6. Autoregressive flows: A popular alternative build-
ing block for invertible networks are masked autoregressive flows
(MAFs) [210]. An autoregressive flow is a bijective function of a number
of inputs yt which for each output xt is conditioned on all preceding

with
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
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◆
f1�!

✓
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x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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For high-dimensional distributions we use the Euclidean squared distance
||f(x))||22. Also inserting the explicit form of the Jacobian determinant
(18.29) yields:

L = �Ex⇠pdata


�1

2
||f(x))||22 +

X
s(x)

�

Using the batch size k, the objective function to be minimized finally be-
comes

L =
1

k

kX

i=1

✓
1

2
||f(xi))||22 �

X
s(xi)

◆
. (18.36)

In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data


Sample points from training data
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In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data
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For high-dimensional distributions we use the Euclidean squared distance
||f(x))||22. Also inserting the explicit form of the Jacobian determinant
(18.29) yields:

L = �Ex⇠pdata


�1

2
||f(x))||22 +

X
s(x)

�

Using the batch size k, the objective function to be minimized finally be-
comes

L =
1

k

kX

i=1

✓
1

2
||f(xi))||22 �

X
s(xi)

◆
. (18.36)

In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data
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Non-linear elementwise transform
Problem: no mixing of variables

Affine combination of variables
Problem: limited representational power

Non-linear transforms
Problem:  hard to compute inverse

Architectures that allow invertible 
non-linear transformations.

Continuous flows depending on ODEs or SDEs

Invertible residual networks 

Fig. 2. Overview of flows discussed in this review. We start with elemen-
twise bijections, linear flows, and planar and radial flows. All of these
have drawbacks and are limited in utility. We then discuss two architec-
tures (coupling flows and autoregressive flows) which support invertible
non-linear transformations. These both use a coupling function, and we
summarize the different coupling functions available. Finally, we discuss
residual flows and their continuous extension infinitesimal flows.

values of the derivatives of h. This can be generalized by
allowing each element to have its own distinct bijective
function which might be useful if we wish to only modify
portions of our parameter vector. In deep learning terminol-
ogy, h, could be viewed as an “activation function”. Note
that the most commonly used activation function ReLU is
not bijective and can not be directly applicable, however,
the (Parametric) Leaky ReLU [He et al., 2015; Maas et al.,
2013] can be used instead among others. Note that recently
spline-based activation functions have also been considered
[Durkan et al., 2019a,b] and will be discussed in Section
3.4.4.4.

3.2 Linear Flows
Elementwise operations alone are insufficient as they cannot
express any form of correlation between dimensions. Linear
mappings can express correlation between dimensions:

g(x) = Ax+ b (8)

where A 2 RD⇥D and b 2 RD are parameters. If A is an
invertible matrix, the function is invertible.

Linear flows are limited in their expressiveness. Con-
sider a Gaussian base distribution: pZ(z) = N (z, µ,⌃). Af-
ter transformation by a linear flow, the distribution remains
Gaussian with distribution pY = N (y,Aµ + b,AT⌃A).
More generally, a linear flow of a distribution from the expo-
nential family remains in the exponential family. However,
linear flows are an important building block as they form
the basis of affine coupling flows (Section 3.4.4.1).

Note that the determinant of the Jacobian is simply
det(A), which can be computed in O(D3), as can the
inverse. Hence, using linear flows can become expensive
for large D. By restricting the form of A we can avoid these
practical problems at the expense of expressive power. In
the following sections we discuss different ways of limiting
the form of linear transforms to make them more practical.

3.2.1 Diagonal

If A is diagonal with nonzero diagonal entries, then its
inverse can be computed in linear time and its determinant

is the product of the diagonal entries. However, the result is
an elementwise transformation and hence cannot express
correlation between dimensions. Nonetheless, a diagonal
linear flow can still be useful for representing normaliza-
tion transformations [Dinh et al., 2017] which have become
a ubiquitous part of modern neural networks [Ioffe and
Szegedy, 2015].

3.2.2 Triangular

The triangular matrix is a more expressive form of linear
transformation whose determinant is the product of its
diagonal. It is non-singular so long as its diagonal entries
are non-zero. Inversion is relatively inexpensive requiring a
single pass of back-substitution costing O(D2) operations.

Tomczak and Welling [2017] combined K triangular
matrices Ti, each with ones on the diagonal, and a K-
dimensional probability vector ! to define a more general
linear flow y = (

PK
i=1 !iTi)z. The determinant of this

bijection is one. However finding the inverse has O(D3)
complexity, if some of the matrices are upper- and some are
lower-triangular.

3.2.3 Permutation and Orthogonal

The expressiveness of triangular transformations is sensitive
to the ordering of dimensions. Reordering the dimensions
can be done easily using a permutation matrix which has
an absolute determinant of 1. Different strategies have been
tried, including reversing and a fixed random permutation
[Dinh et al., 2017; Kingma and Dhariwal, 2018]. However,
the permutations cannot be directly optimized and so re-
main fixed after initialization which may not be optimal.

A more general alternative is the use of orthogonal
transformations. The inverse and absolute determinant of an
orthogonal matrix are both trivial to compute which make
them efficient. Tomczak and Welling [2016] used orthogonal
matrices parameterized by the Householder transform. The
idea is based on the fact from linear algebra that any
orthogonal matrix can be written as a product of reflections.
To parameterize a reflection matrix H in RD one fixes a
nonzero vector v 2 RD , and then defines H = 1� 2

||v||2vv
T .

3.2.4 Factorizations

Instead of limiting the form of A, Kingma and Dhariwal
[2018] proposed using the LU factorization:

g(x) = PLUx+ b (9)

where L is lower triangular with ones on the diagonal, U is
upper triangular with non-zero diagonal entries, and P is a
permutation matrix. The determinant is the product of the
diagonal entries of U which can be computed in O(D). The
inverse of the function g can be computed using two passes
of backward substitution in O(D2). However, the discrete
permutation P cannot be easily optimized. To avoid this, P
is randomly generated initially and then fixed. Hoogeboom
et al. [2019a] noted that fixing the permutation matrix limits
the flexibility of the transformation, and proposed using the
QR decomposition instead where the orthogonal matrix Q

is described with Householder transforms.
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq
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q(x1:T |x0)

�
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log
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q(xt|xt�1)

�
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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q(x1:T |x0)

�
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log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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�
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=
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s=1 ↵s, we have
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=
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s=1 ↵s, we have
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Core idea: Stepwise transition 
from pure noise to data

Forward  
(Data → Noise)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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This is added in the training 
process
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2Rewrite: State at any time

Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
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2
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�
2
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1�↵̄t
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where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq
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q(x1:T |x0)

�
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� log p(xT ) �

X
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log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
we set ⌃✓(xt, t) = �

2
t I to untrained time dependent constants. Experimentally, both �

2
t = �t and

�
2
t = �̃t = 1�↵̄t�1

1�↵̄t
�t had similar results. The first choice is optimal for x0 ⇠ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [53].

Second, to represent the mean µ✓(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �2

t I), we can write:

Lt�1 = Eq


1

2�
2
t

kµ̃t(xt,x0) � µ✓(xt, t)k2

�
+ C (8)

where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
zation of µ✓ is a model that predicts µ̃t, the forward process posterior mean. However, we can expand
Eq. (8) further by reparameterizing Eq. (4) as xt(x0, ✏) =

p
↵̄tx0 +

p
1 � ↵̄t✏ for ✏ ⇠ N (0, I) and

applying the forward process posterior formula (7):
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq
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p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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�
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Resulting learning objective

Table 1: CIFAR10 results. NLL measured in bits/dim.
Model IS FID NLL Test (Train)

Conditional

EBM [11] 8.30 37.9
JEM [17] 8.76 38.4
BigGAN [3] 9.22 14.73
StyleGAN2 + ADA (v1) [29] 10.06 2.67

Unconditional

Diffusion (original) [53]  5.40
Gated PixelCNN [59] 4.60 65.93 3.03 (2.90)
Sparse Transformer [7] 2.80
PixelIQN [43] 5.29 49.46
EBM [11] 6.78 38.2
NCSNv2 [56] 31.75
NCSN [55] 8.87±0.12 25.32
SNGAN [39] 8.22±0.05 21.7
SNGAN-DDLS [4] 9.09±0.10 15.42
StyleGAN2 + ADA (v1) [29] 9.74 ± 0.05 3.26
Ours (L, fixed isotropic ⌃) 7.67±0.13 13.51  3.70 (3.69)
Ours (Lsimple) 9.46±0.11 3.17  3.75 (3.72)

Table 2: Unconditional CIFAR10 reverse
process parameterization and training objec-
tive ablation. Blank entries were unstable to
train and generated poor samples with out-of-
range scores.

Objective IS FID

µ̃ prediction (baseline)

L, learned diagonal ⌃ 7.28±0.10 23.69
L, fixed isotropic ⌃ 8.06±0.09 13.22
kµ̃ � µ̃✓k2 – –

✏ prediction (ours)

L, learned diagonal ⌃ – –
L, fixed isotropic ⌃ 7.67±0.13 13.51
k✏̃ � ✏✓k2 (Lsimple) 9.46±0.11 3.17

training. However, we found it beneficial to sample quality (and simpler to implement) to train on the
following variant of the variational bound:

Lsimple(✓) := Et,x0,✏

h��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

i
(14)

where t is uniform between 1 and T . The t = 1 case corresponds to L0 with the integral in the
discrete decoder definition (13) approximated by the Gaussian probability density function times the
bin width, ignoring �

2
1 and edge effects. The t > 1 cases correspond to an unweighted version of

Eq. (12), analogous to the loss weighting used by the NCSN denoising score matching model [55].
(LT does not appear because the forward process variances �t are fixed.) Algorithm 1 displays the
complete training procedure with this simplified objective.

Since our simplified objective (14) discards the weighting in Eq. (12), it is a weighted variational
bound that emphasizes different aspects of reconstruction compared to the standard variational
bound [18, 22]. In particular, our diffusion process setup in Section 4 causes the simplified objective
to down-weight loss terms corresponding to small t. These terms train the network to denoise data
with very small amounts of noise, so it is beneficial to down-weight them so that the network can
focus on more difficult denoising tasks at larger t terms. We will see in our experiments that this
reweighting leads to better sample quality.

4 Experiments

We set T = 1000 for all experiments so that the number of neural network evaluations needed
during sampling matches previous work [53, 55]. We set the forward process variances to constants
increasing linearly from �1 = 10�4 to �T = 0.02. These constants were chosen to be small
relative to data scaled to [�1, 1], ensuring that reverse and forward processes have approximately
the same functional form while keeping the signal-to-noise ratio at xT as small as possible (LT =
DKL(q(xT |x0) k N (0, I)) ⇡ 10�5 bits per dimension in our experiments).

To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ [52,
48] with group normalization throughout [66]. Parameters are shared across time, which is specified
to the network using the Transformer sinusoidal position embedding [60]. We use self-attention at
the 16 ⇥ 16 feature map resolution [63, 60]. Details are in Appendix B.

4.1 Sample quality

Table 1 shows Inception scores, FID scores, and negative log likelihoods (lossless codelengths) on
CIFAR10. With our FID score of 3.17, our unconditional model achieves better sample quality than
most models in the literature, including class conditional models. Our FID score is computed with
respect to the training set, as is standard practice; when we compute it with respect to the test set, the
score is 5.24, which is still better than many of the training set FID scores in the literature.
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Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
we set ⌃✓(xt, t) = �

2
t I to untrained time dependent constants. Experimentally, both �

2
t = �t and

�
2
t = �̃t = 1�↵̄t�1

1�↵̄t
�t had similar results. The first choice is optimal for x0 ⇠ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [53].

Second, to represent the mean µ✓(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �2

t I), we can write:

Lt�1 = Eq


1

2�
2
t

kµ̃t(xt,x0) � µ✓(xt, t)k2

�
+ C (8)

where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
zation of µ✓ is a model that predicts µ̃t, the forward process posterior mean. However, we can expand
Eq. (8) further by reparameterizing Eq. (4) as xt(x0, ✏) =

p
↵̄tx0 +

p
1 � ↵̄t✏ for ✏ ⇠ N (0, I) and

applying the forward process posterior formula (7):

Lt�1 � C = Ex0,✏

"
1

2�
2
t

����µ̃t

✓
xt(x0, ✏),

1p
↵̄t

(xt(x0, ✏) �
p

1 � ↵̄t✏)

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(9)

= Ex0,✏

"
1

2�
2
t

����
1

p
↵t

✓
xt(x0, ✏) � �tp

1 � ↵̄t
✏

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(10)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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q(xt|xt�1)
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Core idea: Stepwise transition 
from pure noise to data

Algorithm 1 Training
1: repeat
2: x0 ⇠ q(x0)
3: t ⇠ Uniform({1, . . . , T})
4: ✏ ⇠ N (0, I)
5: Take gradient descent step on

r✓

��✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)

��2

6: until converged

Algorithm 2 Sampling

1: xT ⇠ N (0, I)
2: for t = T, . . . , 1 do
3: z ⇠ N (0, I) if t > 1, else z = 0

4: xt�1 = 1p
↵t

⇣
xt � 1�↵tp

1�↵̄t
✏✓(xt, t)

⌘
+ �tz

5: end for
6: return x0

Equation (10) reveals that µ✓ must predict 1p
↵t

⇣
xt � �tp

1�↵̄t
✏
⌘

given xt. Since xt is available as
input to the model, we may choose the parameterization

µ✓(xt, t) = µ̃t

✓
xt,

1p
↵̄t

(xt �
p

1 � ↵̄t✏✓(xt))

◆
=

1
p

↵t

✓
xt � �tp

1 � ↵̄t
✏✓(xt, t)

◆
(11)

where ✏✓ is a function approximator intended to predict ✏ from xt. To sample xt�1 ⇠ p✓(xt�1|xt) is
to compute xt�1 = 1p

↵t

⇣
xt � �tp

1�↵̄t
✏✓(xt, t)

⌘
+�tz, where z ⇠ N (0, I). The complete sampling

procedure, Algorithm 2, resembles Langevin dynamics with ✏✓ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,✏


�

2
t

2�
2
t ↵t(1 � ↵̄t)

��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

�
(12)

which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µ✓ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ✏. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ✏-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of p✓(xt�1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ✏ against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [�1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µ✓(x1, 1), �2

1I):

p✓(x0|x1) =
DY

i=1

Z �+(xi
0)

��(xi
0)

N (x; µi
✓(x1, 1), �2

1) dx

�+(x) =

⇢
1 if x = 1
x + 1

255 if x < 1
��(x) =

⇢
�1 if x = �1
x � 1

255 if x > �1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µ✓(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to ✓ and is ready to be employed for
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2

Core idea: Stepwise transition 
from pure noise to data

Algorithm 1 Training
1: repeat
2: x0 ⇠ q(x0)
3: t ⇠ Uniform({1, . . . , T})
4: ✏ ⇠ N (0, I)
5: Take gradient descent step on

r✓

��✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)

��2

6: until converged

Algorithm 2 Sampling

1: xT ⇠ N (0, I)
2: for t = T, . . . , 1 do
3: z ⇠ N (0, I) if t > 1, else z = 0

4: xt�1 = 1p
↵t

⇣
xt � 1�↵tp

1�↵̄t
✏✓(xt, t)

⌘
+ �tz

5: end for
6: return x0

Equation (10) reveals that µ✓ must predict 1p
↵t

⇣
xt � �tp

1�↵̄t
✏
⌘

given xt. Since xt is available as
input to the model, we may choose the parameterization

µ✓(xt, t) = µ̃t

✓
xt,

1p
↵̄t

(xt �
p

1 � ↵̄t✏✓(xt))

◆
=

1
p

↵t

✓
xt � �tp

1 � ↵̄t
✏✓(xt, t)

◆
(11)

where ✏✓ is a function approximator intended to predict ✏ from xt. To sample xt�1 ⇠ p✓(xt�1|xt) is
to compute xt�1 = 1p

↵t

⇣
xt � �tp

1�↵̄t
✏✓(xt, t)

⌘
+�tz, where z ⇠ N (0, I). The complete sampling

procedure, Algorithm 2, resembles Langevin dynamics with ✏✓ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,✏


�

2
t

2�
2
t ↵t(1 � ↵̄t)

��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

�
(12)

which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µ✓ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ✏. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ✏-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of p✓(xt�1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ✏ against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [�1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µ✓(x1, 1), �2

1I):

p✓(x0|x1) =
DY

i=1

Z �+(xi
0)

��(xi
0)

N (x; µi
✓(x1, 1), �2

1) dx

�+(x) =

⇢
1 if x = 1
x + 1

255 if x < 1
��(x) =

⇢
�1 if x = �1
x � 1

255 if x > �1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µ✓(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to ✓ and is ready to be employed for
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be

61

Forward SDE:
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large enough such that p�max pxq « N px;0,�2
maxIq. Song & Ermon (2019) propose to train a Noise

Conditional Score Network (NCSN), denoted by s✓px,�q, with a weighted sum of denoising score
matching (Vincent, 2011) objectives:

✓˚ “ argmin
✓

Nÿ

i“1

�2
i EpdatapxqEp�i px̃|xq

“
ks✓px̃,�iq ´ rx̃ log p�ipx̃ | xqk22

‰
. (1)

Given sufficient data and model capacity, the optimal score-based model s✓˚ px,�q matches
rx log p�pxq almost everywhere for � P t�iuNi“1. For sampling, Song & Ermon (2019) run M steps
of Langevin MCMC to get a sample for each p�ipxq sequentially:

xm
i “ xm´1

i ` ✏is✓˚ pxm´1
i ,�iq ` ?

2✏iz
m
i , m “ 1, 2, ¨ ¨ ¨ ,M, (2)

where ✏i ° 0 is the step size, and zmi is standard normal. The above is repeated for i “ N,N ´
1, ¨ ¨ ¨ , 1 in turn with x0

N „ N px | 0,�2
maxIq and x0

i “ xM
i`1 when i † N . As M Ñ 8 and ✏i Ñ 0

for all i, xM
1 becomes an exact sample from p�min pxq « pdatapxq under some regularity conditions.

2.2 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM)

Sohl-Dickstein et al. (2015); Ho et al. (2020) consider a sequence of positive noise scales
0 † �1,�2, ¨ ¨ ¨ ,�N † 1. For each training data point x0 „ pdatapxq, a discrete Markov chain
tx0,x1, ¨ ¨ ¨ ,xNu is constructed such that ppxi | xi´1q “ N pxi;

?
1 ´ �ixi´1,�iIq, and therefore

p↵ipxi | x0q “ N pxi;
?
↵ix0, p1 ´ ↵iqIq, where ↵i :“

±i
j“1p1 ´ �jq. Similar to SMLD, we can

denote the perturbed data distribution as p↵ipx̃q :“ ≥
pdatapxqp↵ipx̃ | xqdx. The noise scales are pre-

scribed such that xN is approximately distributed according to N p0, Iq. A variational Markov chain
in the reverse direction is parameterized with p✓pxi´1|xiq “ N pxi´1;

1?
1´�i

pxi`�is✓pxi, iqq,�iIq,
and trained with a re-weighted variant of the evidence lower bound (ELBO):

✓˚ “ argmin
✓

Nÿ

i“1

p1 ´ ↵iqEpdatapxqEp↵i px̃|xqrks✓px̃, iq ´ rx̃ log p↵ipx̃ | xqk22s. (3)

After solving Eq. (3) to get the optimal model s✓˚ px, iq, samples can be generated by starting from
xN „ N p0, Iq and following the estimated reverse Markov chain as below

xi´1 “ 1?
1 ´ �i

pxi ` �is✓˚ pxi, iqq `
a
�izi, i “ N,N ´ 1, ¨ ¨ ¨ , 1. (4)

We call this method ancestral sampling, since it amounts to performing ancestral sampling from
the graphical model

±N
i“1 p✓pxi´1 | xiq. The objective Eq. (3) described here is Lsimple in Ho et al.

(2020), written in a form to expose more similarity to Eq. (1). Like Eq. (1), Eq. (3) is also a weighted
sum of denoising score matching objectives, which implies that the optimal model, s✓˚ px̃, iq, matches
the score of the perturbed data distribution, rx log p↵ipxq. Notably, the weights of the i-th summand
in Eq. (1) and Eq. (3), namely �2

i and p1´↵iq, are related to corresponding perturbation kernels in the
same functional form: �2

i 91{Erkrx log p�ipx̃ | xqk22s and p1 ´ ↵iq91{Erkrx log p↵ipx̃ | xqk22s.

3 SCORE-BASED GENERATIVE MODELING WITH SDES

Perturbing data with multiple noise scales is key to the success of previous methods. We propose to
generalize this idea further to an infinite number of noise scales, such that perturbed data distributions
evolve according to an SDE as the noise intensifies. An overview of our framework is given in Fig. 2.

3.1 PERTURBING DATA WITH SDES

Our goal is to construct a diffusion process txptquTt“0 indexed by a continuous time variable t P r0, T s,
such that xp0q „ p0, for which we have a dataset of i.i.d. samples, and xpT q „ pT , for which we
have a tractable form to generate samples efficiently. In other words, p0 is the data distribution and
pT is the prior distribution. This diffusion process can be modeled as the solution to an Itô SDE:

dx “ fpx, tqdt ` gptqdw, (5)

3
Drift term Diffusion term

Wiener process/ 
Brownian motion 
(independent 
Gaussian 
increments)

(Correspond to the noise schedule 
in discrete case)
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ argmin
✓

Et

!
�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq
��2
2

‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E

“ ��rxptq log p0tpxptq | xp0qq
��2
2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced

4
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ argmin
✓

Et

!
�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq
��2
2

‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E

“ ��rxptq log p0tpxptq | xp0qq
��2
2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):
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Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E

“ ��rxptq log p0tpxptq | xp0qq
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