To the Higgs and beyond

Hamburg International Summer School 14 – 25 July 2025

Katharina Behr

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery

> Part 2: What is the fingerprint of the vacuum?

- Unravelling the Higgs potential
- Higgs boson pair production
- Extra: Triple Higgs production
- Outlook: the future of the LHC and beyond
- > Part 3: Is there even more to the vacuum?
 - Extended Higgs sectors
 - Extra: news from the ttbar threshold
 - Long-lived particles and the Higgs

h

h

Н

Α

h

 H^+

H-

Outline

> Part 1: The vacuum is not empty

- The Higgs boson in the Standard Model
- Characterization of the Higgs boson since its discovery

> Part 2: What is the fingerprint of the vacuum?

- Unravelling the Higgs potential
- Higgs boson pair production
- Extra: Triple Higgs production
- Outlook: the future of the LHC and beyond
- > Part 3: Is there even more to the vacuum?
 - Extended Higgs sectors
 - Extra: news from the ttbar threshold
 - Long-lived particles and the Higgs

h

h

Н

Α

h

 H^+

H-

. . .

Why look for more Higgs bosons?

- Supersymmetry: predicts a second Higgs doublet
- > Axion DM models: require at least one more Higgs doublet or Higgs triplet
- > Additional sources of CP violation in the Higgs sector: possible with another Higgs doublet

Constraints from existing measurements (1)

- > Higgs sector cannot be extended arbitrarily...
- > ... need to ensure that BSM theory predictions do not contradict existing measurements
- > ρ parameter constraints
 - ρ depends on structure of Higgs sector
 - $\rho = 1$ in SM
 - Value confirmed in measurements
 - BSM model with multiple Higgs doublets:
 - For example: SU(2) doublets with Y = ± 1
 - Yields ρ = 1!

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W}$$

$$\rho = \frac{\sum_{i=1}^{n} \left[I_i (I_i + 1) - \frac{1}{4} Y_i^2 \right] v_i}{\sum_{i=1}^{n} \frac{1}{2} Y_i^2 v_i}$$

$$I(I+1) = \frac{3}{4}Y^2$$

Constraints from existing measurements (2)

- > Higgs sector cannot be extended arbitrarily...
- > ... need to ensure that BSM theory predictions do not contradict existing measurements
- > ρ parameter constraints
- Constraints flavour changing neutral currents
 - FCNCs are absent in the SM at tree-level
 - Never observed in precision measurements
 - Extended Higgs sectors must not introduce (significant) FCNCs

Constraints from existing measurements (3)

- > Higgs sector cannot be extended arbitrarily...
- > ... need to ensure that BSM theory predictions do not contradict existing measurements
- > ρ parameter constraints
- > Constraints flavour changing neutral currents
- > Unitarity constraints
 - Amplitudes for self-scattering of longitudinal vector bosons must not violate unitarity
 - SM Higgs sector regularises these scattering amplitudes

Two-Higgs-Doublet Models (2HDMs)

- > Two complex scalar SU(2) doublets with Y = +1
- > Focus on CP conserving case with softly broken Z² symmetry
- > Most general scalar potential

More details in this nice lecture by M. Muhlleitner [link]

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right] ,$$

Two-Higgs-Doublet Models (2HDMs)

- > Two complex scalar SU(2) doublets with Y = +1
- > Focus on CP conserving case with softly broken Z² symmetry
- > Most general scalar potential

More details in this nice lecture by M. Muhlleitner [link]

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right] ,$$

> 8 real parameters: m_{11} , m_{22} , m_{12} , λ_1 , λ_2 , λ_3 , λ_4 , λ_5

> 2 VEVs:

$$\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ \frac{v_1}{\sqrt{2}} \end{pmatrix}$$
 and $\langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ \frac{v_2}{\sqrt{2}} \end{pmatrix}$

2HDM: particle content

- > 8 real fields
- > 3 fields provide longitudinal degrees of freedom for *W*, *Z*
- > 5 Higgs fields after EWSB:
 - 2 scalars, 1 pseudoscalar, 2 charged

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ \frac{v_a + \rho_a + i\eta_a}{\sqrt{2}} \end{pmatrix}, \qquad a = 1, 2$$

2HDM: parameters

- > 8 real parameters: m_{11} , m_{22} , m_{12} , λ_1 , λ_2 , λ_3 , λ_4 , λ_5
- > Re-parameterise potential in terms of 8 "physical" parameters:

2HDM: parameters

- Constraints from precision measurements of 125 GeV boson
 - Couplings to fermions and limits on invisible decays
- > Alignment limit $\cos(\beta \alpha) = 0$ favoured
 - Assume lighter scalar h is the 125 GeV boson with SM couplings

2HDM: Yukawa structure

- > No FCNC \rightarrow each type of fermion couples to only one of the doublets (Z² symmetry)
- > Four Yukawa coupling scenarios:

Model	Up quarks	Down quarks	Leptons	
Type I	Φ_2	Φ_2	Φ_2	
Туре II	Φ_2	Φ_1	Φ_1	SUSY models
Lepton-specific	Φ_2	Φ_2	Φ_1	
Flipped	Φ_2	Φ_1	Φ_2	

- > Type-II 2HDM:
 - Up quark coupling ~ $1/\tan\beta$
 - Down quark / lepton coupling: tanβ

Searching for extra neutral Higgs bosons

> Dominant production: loop induced gluon fusion

Searching for extra neutral Higgs bosons

- > Dominant production: loop induced gluon fusion
- > Decay modes depend on: m_{A/H}, tanβ

Searching for extra neutral Higgs bosons

- Dominant production: loop induced gluon fusion >
- Decay modes depend on: $m_{A/H}$, tan β >

 $BR(H \rightarrow XX)$

10

10⁻²

- > Minimal supersymmetric model
 - Higgs-sector: type-II 2HDM
 - SUSY particles assumed to be heavy
- > Only 2 free parameters: m_A , tan β

Main uncovered region at high m_A , low tan β :

Preferential A/H coupling to ttbar!

- > Why is the search in the high-mass, low-tan β region so complicated?
- > Signal: loop induced resonant production of heavy scalar H or pseudoscalar A from gluons
 - Similar to SM Higgs production but $m_{A/H} > 2*m_{top}$

- > Why is the search in the high-mass, low-tan β region so complicated?
- > Signal: loop induced resonant production of heavy scalar H or pseudoscalar A from gluons
 - Similar to SM Higgs production but $m_{A/H} > 2*m_{top}$
- > Main, irreducible background: top quark pair production via the strong force

80% gg-initiated 20% qq-initiated

- > Why is the search in the high-mass, low-tan β region so complicated?
- > Signal: loop induced resonant production of heavy scalar H or pseudoscalar A from gluons
 - Similar to SM Higgs production but $m_{A/H} > 2*m_{top}$
- > Main, irreducible background: top quark pair production via the strong force (mostly from gluons)

- > Many challenges compared to bump hunts
 - Interference pattern highly model dependent \rightarrow many simulations needed!

- > Many challenges compared to bump hunts
 - Interference pattern highly model dependent \rightarrow many simulations needed!
 - Very complex patterns, especially if there is more than one new particle

- > Many challenges compared to bump hunts
 - Interference pattern highly model dependent \rightarrow many simulations needed!
 - Very complex patterns, especially if there is more than one new particle
 - Detector effects "wash out" details of pattern

- > Many challenges compared to bump hunts
 - Interference pattern highly model dependent \rightarrow many simulations needed!
 - Very complex patterns, especially if there is more than one new particle
 - Detector effects "wash out" details of pattern
 - Risk to miss narrow patterns
 - Peak and dip in the same bin cancel out
 - Statistical interpretation

. . .

The advantage: interference

- > Strong model dependence of interference pattern allows to characterise potential new particle(s)
 - → Fingerprint that carries information about particle properties

> Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > **2L channel**: m_{IIbb} as proxy for m_{ttbar}

JHEP 08 (2024) 013

Scarchist

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > **2L channel**: m_{llbb} as proxy for m_{ttbar}
- > 1L channel: reconstruct full ttbar system, m_{ttbar}
 - Resolved: small-*R* jets assigned via χ^2 algorithm, ==1 or $\geq 2 b$ -tagged

JHEP 08 (2024) 013

Katharina Behr

b-Jet

low p_r^{top}

b-Jet

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > **2L channel**: m_{llbb} as proxy for m_{ttbar}
- > 1L channel: reconstruct full ttbar system, m_{ttbar}
 - Resolved: small-*R* jets assigned via χ^2 algorithm, ==1 or $\geq 2 b$ -tagged
 - Merged: large-*R* jet to reconstruct hadronic top-quark decay

JHEP 08 (2024) 013

e/µ

Neutrino

It's all about spins!

- > Signal: s-channel production in pure spin-singlet state (isotropy!)
- > Background: a mixture of production modes and spin states
- > Angular variables to distinguish between signal and background

It's all about spins!

DESY.

- > Signal: s-channel production in pure spin-singlet state (isotropy!)
- > Background: a mixture of production modes and spin states
- > Angular variables to distinguish between signal and background

Page 33

JHEP 08 (2024) 013

Background processes

> Dominant and irreducible background from SM ttbar production

16 signal regions after angular binning

(regions shown here not split into angular bins for simplicity)

Background processes

- > Dominant and irreducible background from SM ttbar production
 - Correct NLO Powheg+Pythia MC to NNLO-QCD+NLO-EW
 - Via iterative reweighting in m(ttbar), $p_T(t)$, $p_T(t)$

16 signal regions after angular binning

(regions shown here not split into angular bins for simplicity)

Statistical analysis without interference

> Simple likelihood parameterisation in terms of signal strength

 $|\mu \cdot S + B|$

- > Linear dependence on POI = μ
- > Standard LHC profile likelihood test statistic

 $\lambda(\mu) = \frac{L(\mu, \hat{\boldsymbol{\theta}}(\mu))}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})}$

> p-value scan to determine upper limits on μ

Statistical analysis with interference

Extend likelihood to include interference term

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$$

- > Quadratic dependence on POI = $\sqrt{\mu}$
 - Interference shape changes with POI

JHEP 08 (2024) 013

Statistical analysis with interference

Extend likelihood to include interference term

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$$

- > Quadratic dependence on POI = $\sqrt{\mu}$
 - Interference shape changes with POI
 - Local minima can appear in CLs scan
 - Upper limits not well defined!

JHEP 08 (2024) 013

Search stage

JHEP 08 (2024) 013

2L

- Tested agreement between data and S+I+B hypotheses with masses [400,1400] GeV and widths [1,40]% >
- Most significant deviation from SM-only (2.3 σ local): $m_A = 800$ GeV, $\Gamma_A/m_A = 10\%$ and $\sqrt{\mu} = 4.0$ >

Events / 50 GeV

1L Resolved 2b

Constraints on relevant benchmark models: hMSSM

Strongest constraints on m_A at lowest value of $tan\beta = 1.0$ >

JHEP 08 (2024) 013

Coupling constraints for a single (pseudo)scalar

- > Upper limit on coupling to top quarks for a fixed width
- > "Island" due to local minima in likelihood scan

Extra: ALPs coupling to top quarks

- > Interference searches sensitive to axion-like particles (ALPs) at the GeV scale
- Key difference compared to heavy Higgs bosons: direct gluon coupling!
 - Different interference pattern!

Unique for ALPs!

Related work: Jeppe et al: DESY-24-059 Carra et al: PRD 104 (2021) 9, 092005

Extra: ALPs coupling to top quarks

- > Assume $c_G = 0$
- Constraints from heavy-Higgs search directly translate to constraints on ct

Width depends on m_a and c_t Fixed pseudoscalar width Axion-Top coupling constraints 2.5 ا^{#9} 10° ATLAS ndirect Z $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ 10^{-} 2.0 TLAST $A \rightarrow t\bar{t}, \Gamma/M = 5\%$ Indirect hhZ MS tī non resonan -1 10^{-2} $\frac{1}{10^{-3}}$ $\frac{10^{-3}}{10^{-4}}$ $\frac{10^{-3}}{10^{-5}}$ 1.5 TLAS tha searcl 1.0 $g_{Att}/v = c_t/f_a$ Observed 95% CL exclusion 0.5 B decays Expected 95% CL exclusion $(\pm 1\sigma \text{ and } \pm 2\sigma)$ 10^{-6} $\Gamma_{tt} > \Gamma_{total}$ (unphysical) Esser et al, JHEP 10 (2024) 164 0.0 10^{-7} 500 600 700 800 900 1000 1100 1200 1300 1400 400 10^{-2} 10^{-1} 10^{0} 10^{2} 10^{3} 10^{1} 10^{4} M_A [GeV] m_a [GeV]

DESY.

A little twist ...

- > Similar analysis by CMS but more optimised for low- m_{tt} than high- m_{tt} region
- > Observe > 5σ deviation of the data from the prediction in the ttbar threshold region (m_{tt} < 400 GeV)

What if extra bosons are light?

- > New (pseudo)scalar states with mass < 125 GeV constrained but not excluded by LEP etc.
- Motivation especially for light pseudoscalars:
 - Extended Higgs sector models
 - ALPs
- > Exotic Higgs decays: $h_{125} \rightarrow aa$
- > Detector signatures depend on
 - Mass m_a (\rightarrow Yukawa coupling to SM fermions)
 - $\ ^{-}\ h_{125} \rightarrow \ aa \ \rightarrow \ 4b$

$$h_{125} \rightarrow aa \rightarrow 4\mu$$

- Couplings to BSM particles, e.g. DM
 - $\ ^{-}\ h_{125}\ \rightarrow\ aa\ \rightarrow\ 4b$
- Lifetime of *a*

...

•

...

m_a [GeV]

Long-lived particles

- > Exotic decay products (a, S, ...) of the Higgs could be long-lived
- > Proper lifetime $c\tau$ of order mm to m \rightarrow decay not at interaction point but inside detector volume
- > Wealth of possible detector signatures: displaced tracks, trackless jets, displaced muons, ...
 - Not captured by standard particle identification algorithms!

Long-lived particles

- > Exotic decay products (a, S, ...) of the Higgs could be long-lived
- > Proper lifetime $c\tau$ of order mm to m \rightarrow decay not at interaction point but inside detector volume
- > Wealth of possible detector signatures: displaced tracks, trackless jets, displaced muons, ...
 - Not captured by standard particle identification algorithms!

Long-lived particles

- > Exotic decay products (a, S, ...) of the Higgs could be long-lived
- > Proper lifetime $c\tau$ of order mm to m \rightarrow decay not at interaction point but inside detector volume
- > Wealth of possible detector signatures: displaced tracks, trackless jets, displaced muons, ...
 - Not captured by standard particle identification algorithms!

Example: displaced muon pairs

- Exotic Higgs decay to a pair of long-lived dark photons: $h \rightarrow Z_D Z_D \rightarrow \mu \mu \mu \mu$ >
- Implemented novel triggers targeting displaced muon pairs + other offline analysis techniques >
- Significant sensitivity boost across lifetime range >

Impressive lifetime coverage

Probing lifetimes/decay lengths from O(µm) to O(10m)

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Higgs Part 3: Summary

- Extended Higgs sectors part of many well-motivated extensions of the SM
- > Broad experimental programme to search for extra Higgs bosons
 - Different production modes (gg-fusion, exotic Higgs decays)
 - Different decay modes
- > Decays to top quarks particularly challenging due to interference
 - Excess seen at ttbar threshold ... see bonus lecture!

Overall summary

Part 1: The vacuum is not empty >

- Significant progress in characterising the Higgs boson
- Measurements in agreement with SM within current uncertainties \rightarrow much room for BSM physics

Part 2: What is the fingerprint of the vacuum? >

- Unprecedented constraints on self-couplings from hh searches on LHC Run-2 data
- Algorithm improvements via AI crucial
- Part 3: Is there even more to the vacuum? >
 - Broad search programme for new states
 - Exciting news from ttbar threshold
 - Plethora of little explored unusual signatures

h

BONUS SLIDES

DESY.

> Search stage:

- Should we reject SM in favour of (any) BSM hypothesis?
- Test agreement of data with range of interference patterns
- Consider all possible values of POI

 $\sqrt{\mu}$ equivalent to g_{Att}

- > Exclusion stage:
 - Should we reject the BSM hypothesis (μ =1) under consideration?
 - Test (dis)agreement of data with specific interference pattern of tested signal hypothesis

$$q_{1,0} = -2\ln\frac{\mathcal{L}(1,\hat{\hat{\theta}}_1)}{\mathcal{L}(0,\hat{\hat{\theta}}_0)}$$

$$\lambda(\mu) = \frac{L(\mu, \hat{\hat{\boldsymbol{\theta}}}(\mu))}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})}$$

Systematic uncertainties (ATLAS)

- Largest sources of uncertainty: SM ttbar modelling
- > tt NNLO includes:
 - Uncertainties in reweighting
 - Scale and PDF uncertainties on calculation
 - Uncertainty on EW component from comparison of NN vs LUX PDFs

Katharina Behr

- > tt lineshape: comparison with MadSpin
- > tt PS: Pythia vs Herwig
- > m_{top:} ± 0.76 GeV

Uncertainty component	Fractional contribution [%]		
	$m_A = 800 \text{ GeV}$	$m_A = m_H = 500 \text{ GeV}$	
	$\tan\beta = 0.4$	$\tan\beta = 2.0$	
Experimental	30	42	
Small- <i>R</i> jets (JER, JES)	22	29	
Large-VR jets	11	20	
Flavour tagging	13	17	
Leptons	4	5	
Other $(E_{\rm T}^{\rm miss}$, luminosity, pile-up, JVT)	10	14	
Modelling: SM $t\bar{t}$ and signal	91	79	
<i>tī</i> NNLO	49	28	
$t\bar{t}$ lineshape	27	29	
$t\bar{t}$ ME-PS $(p_{\rm T}^{\rm hard})$	36	30	
$t\bar{t}$ ME-PS (h_{damp})	41	25	
$t\bar{t}$ ISR& FSR	9	13	
$t\bar{t}$ PS	29	41	
$t\bar{t}$ cross-section	21	31	
$t\bar{t}$ Scales & PDF	21	16	
m_t	6	4	
Signal	19	9	
Modelling: other	41	16	
W+jets	11	8	
Z+jets	1	2	
Multijet	27	10	
Fakes	<1	1	
Other bkg.	29	10	
MC statistics	18	26	
Total systematic uncertainty	±100	±100	
Total statistical uncertainty	< 1	< 1	

Statistical analysis with interference

Extend likelihood to include interference term

 $\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$

- > Quadratic dependence on POI = $\sqrt{\mu}$
 - Interference shape changes with POI
 - Local minima can appear in CLs scan
 - Upper limits not well defined!
- > Requires going beyond common statistical approaches
 - Choice of appropriate test statistic
 - Interpolation between signal hypotheses
 - Correct limit band calculation
 - New baseline in ATLAS StatAnalysis (on cvmfs)
 - Treatment of histograms with negative yields

DESY.

1L Resolved

- > Require \geq 4 jets, \geq 1 b-jet
- > Reconstruct full ttbar system:
 - Neutrino 4-vector from W-mass constraint
 - Assignment of jets based on χ^2 minimisation

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{(m_{jjb} - m_{jj}) - m_{t_{h} - W}}{\sigma_{t_{h} - W}}\right]^{2} + \left[\frac{m_{jl\nu} - m_{t_{l}}}{\sigma_{t_{l}}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,jl\nu}) - (p_{T,t_{h}} - p_{T,t_{l}})}{\sigma_{diff}p_{T}}\right]^{2}$$

1L Merged

- > Top candidate jet:
 - Variable-*R* jet ($R_{max} = 1.5$) optimised for intermediate top boosts ($m_{ttbar} \sim 1 \text{ TeV}$)
 - Jet radius shrinks with jet p_T
 - Jet size automatically adapts to boost of top quark
- > Leptonic top b-candidate jet: \geq 1 small-R jet well separated from top candidate jet
- > Reconstruct full ttbar system:
 - Neutrino 4-vector from W-mass constraint
 - Selected lepton
 - Leptonic top b-candidate
 - Top candidate jet

$$R_{\mathrm{eff,i}}(p_T) = rac{
ho}{p_{T,i}}$$
 (ho = 600 GeV)

Differences in background modelling

> Reweighting from NLO Powheg+Pythia to NNLO-QCD+NLO-EW

> CMS:

DESY.

- Double differential reweighting in m_{tt} and $cos\theta^{*}_{t}$
- Calculated with HATHOR and MATRIX
- m_t = 172.5 GeV
- > ATLAS: m_t = 173.3 GeV

Differences in treatment of systematic uncertainties

> Top Yukawa coupling

- Not included in ATLAS model, not provided by Mitov et al.
- Leading for CMS

> Top mass uncertainty

- Heavily constrained and high ranking for CMS
- Not the case for ATLAS
- Parton shower (Pythia8 vs Herwig7)
 - Major uncertainty for ATLAS: high-ranking, pulled, and constrained
 - Small impact for CMS (internal studies)
 - Impact reduced by use of c_{hel} and c_{han} ?

Dark matter interpretations: 2HDM+a

- > Minimal, UV-complete extension of simplified models
- > First DM interpretation of an interference search
- > First search considering interference patterns due to mixing of two pseudo-scalars

JHEP 08 (2024) 013

Dark matter interpretations: 2HDM+a

JHEP 08 (2024) 013

- > Benchmark scenario 3a in LHC DM WG recommendations
- > Leading expected exclusion at high mediator mass
- Observed exclusion slightly weaker than H⁺(tb) result due to downward fluctuation

Science Bulletin 69 (2024) 3005

Key differences with ATLAS

- > Spin correlation variables sensitive to degree of entanglement in 2L channel
 - 1L: cosθ*
 - 2L: Chel, Chan

$$c_{\text{hel}} = -(\hat{\ell}^+)_k (\hat{\ell}^-)_k - (\hat{\ell}^+)_r (\hat{\ell}^-)_r - (\hat{\ell}^+)_n (\hat{\ell}^-)_n$$

$$c_{\text{han}} = +(\hat{\ell}^+)_k (\hat{\ell}^-)_k - (\hat{\ell}^+)_r (\hat{\ell}^-)_r - (\hat{\ell}^+)_n (\hat{\ell}^-)_n$$

CMS-PAS-HIG-22-013

Enhances sensitivity to pseudoscalar

Enhances sensitivity to scalar

DESY.

Katharina Behr

Page 67