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Key events in the thermal history of the universe46 3. Thermal History

Event time t redshift z temperature T

Inflation 10�34 s (?) – –

Baryogenesis ? ? ?

EW phase transition 20 ps 1015 100 GeV

QCD phase transition 20 µs 1012 150 MeV

Dark matter freeze-out ? ? ?

Neutrino decoupling 1 s 6⇥ 109 1 MeV

Electron-positron annihilation 6 s 2⇥ 109 500 keV

Big Bang nucleosynthesis 3 min 4⇥ 108 100 keV

Matter-radiation equality 60 kyr 3400 0.75 eV

Recombination 260–380 kyr 1100–1400 0.26–0.33 eV

Photon decoupling 380 kyr 1000–1200 0.23–0.28 eV

Reionization 100–400 Myr 11–30 2.6–7.0 meV

Dark energy-matter equality 9 Gyr 0.4 0.33 meV

Present 13.8 Gyr 0 0.24 meV

Table 3.1: Key events in the thermal history of the universe.

show that choosing natural values for the mass of the dark matter particles and their

interaction cross section with ordinary matter reproduces the observed relic dark matter

density surprisingly well.

• Neutrino decoupling. Neutrinos only interact with the rest of the primordial plasma

through the weak interaction. The estimate in (3.1.10) therefore applies and neutrinos

decouple at 0.8 MeV.

• Electron-positron annihilation. Electrons and positrons annihilate shortly after neu-

trino decoupling. The energies of the electrons and positrons gets transferred to the

photons, but not the neutrinos. In §3.2.4, we will explain that this is the reason why the

photon temperature today is greater than the neutrino temperature.

• Big Bang nucleosynthesis. Around 3 minutes after the Big Bang, the light elements

were formed. In §3.3.4, we will study this process of Big Bang nucleosynthesis (BBN).

• Recombination. Neutral hydrogen forms through the reaction e
�+p

+ ! H+� when the

temperature has become low enough that the reverse reaction is energetically disfavoured.

We will study recombination in §3.3.3.
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as p / a
�1. It is therefore convenient to define the time-independent combination q ⌘ ap, so

that the neutrino number density is

n⌫ / a
�3

Z
d3q

1

exp(q/aT⌫) + 1
. (3.2.71)

After decoupling, particle number conservation requires n⌫ / a
�3. This is only consistent with

(3.2.71) if the neutrino temperature evolves as T⌫ / a
�1. As long as the photon temperature13

T� scales in the same way, we still have T⌫ = T� . However, particle annihilations will cause a

deviation from T� / a
�1 in the photon temperature.

3.2.5 Electron-Positron Annihilation

Shortly after the neutrinos decouple, the temperature drops below the electron mass and electron-

positron annihilation occurs

e
+ + e

� $ � + � . (3.2.72)

The energy density and entropy of the electrons and positrons are transferred to the photons,

but not to the decoupled neutrinos. The photons are thus “heated” (the photon temperature

does not decrease as much) relative to the neutrinos (see fig. 3.5). To quantify this e↵ect, we

photon heating

neutrino decoupling

electron-positron
annihilation

Figure 3.5: Thermal history through electron-positron annihilation. Neutrinos are decoupled and their
temperature redshifts simply as T⌫ / a

�1. The energy density of the electron-positron pairs is transferred
to the photon gas whose temperature therefore redshifts more slowly, T� / g

�1/3

?S
a
�1.

consider the change in the e↵ective number of degrees of freedom in entropy. If we neglect

neutrinos and other decoupled species,14 we have

g
th

?S =

(
2 + 7

8
⇥ 4 = 11

2
T & me

2 T < me

. (3.2.73)

Since, in equilibrium, g
th

?S
(aT�)3 remains constant, we find that aT� increases after electron-

positron annihilation, T < me, by a factor (11/4)1/3, while aT⌫ remains the same. This means

13For the moment we will restore the subscript on the photon temperature to highlight the di↵erence with the

neutrino temperature.
14Obviously, entropy is separately conserved for the thermal bath and the decoupling species.
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• It implies that s / a
�3. The number of particles in a comoving volume is therefore

proportional to the number density ni divided by the entropy density

Ni ⌘
ni

s
. (3.2.65)

If particles are neither produced nor destroyed, then ni / a
�3 and Ni is constant. This is

case, for example, for the total baryon number after baryogenesis, nB/s ⌘ (nb � n
b̄
)/s.

• It implies, via eq. (3.2.62), that

g?S(T )T
3
a
3 = const. , or T / g

�1/3

?S
a
�1

. (3.2.66)

Away from particle mass thresholds g?S is approximately constant and T / a
�1, as ex-

pected. The factor of g�1/3

?S
accounts for the fact that whenever a particle species becomes

non-relativistic and disappears, its entropy is transferred to the other relativistic species

still present in the thermal plasma, causing T to decrease slightly less slowly than a
�1.

We will see an example in the next section (cf. fig. 3.5).

Substituting T / g
�1/3

?S
a
�1 into the Friedmann equation

H =
1

a

da

dt
'

⇣
⇢r

3M2

pl

⌘
1/2

' ⇡

3

⇣
g?

10

⌘
1/2 T

2

Mpl

, (3.2.67)

we reproduce the usual result for a radiation dominated universe, a / t
1/2, except that

there is a change in the scaling every time g?S changes. For T / t
�1/2, we can integrate

the Friedmann equation and get the temperature as a function of time

T

1MeV
' 1.5g�1/4

?

✓
1sec

t

◆
1/2

. (3.2.68)

It is a useful rule of thumb that the temperature of the universe 1 second after the Big

Bang was about 1 MeV, and evolved as t�1/2 before that.

3.2.4 Neutrino Decoupling

Neutrinos are coupled to the thermal bath via weak interaction processes like

⌫e + ⌫̄e $ e
+ + e

�
,

e
� + ⌫̄e $ e

� + ⌫̄e .
(3.2.69)

The cross section for these interactions was estimated in (3.1.9), � ⇠ G
2

F
T
2, and hence it was

found that � ⇠ G
2

F
T
5. As the temperature decreases, the interaction rate drops much more

rapidly that the Hubble rate H ⇠ T
2
/Mpl:

�

H
⇠

✓
T

1MeV

◆
3

. (3.2.70)

We conclude that neutrinos decouple around 1 MeV. (A more accurate computation gives

Tdec ⇠ 0.8 MeV.) After decoupling, the neutrinos move freely along geodesics and preserve

to an excellent approximate the relativistic Fermi-Dirac distribution (even after they become

non-relativistic at later times). In §1.2.1, we showed the physical momentum of a particle scales
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3.3.2 Dark Matter Relics

We start with the slightly speculative topic of dark matter freeze-out. I call this speculative

because it requires us to make some assumptions about the nature of the unknown dark matter

particles. For concreteness, we will focus on the hypothesis that the dark matter is a weakly

interacting massive particle (WIMP).

Freeze-Out

WIMPs were in close contact with the rest of the cosmic plasma at high temperatures, but

then experienced freeze-out at a critical temperature Tf . The purpose of this section is to solve

the Boltzmann equation for such a particle, determining the epoch of freeze-out and its relic

abundance.

To get started we have to assume something about the WIMP interactions in the early uni-

verse. We will imagine that a heavy dark matter particle X and its antiparticle X̄ can annihilate

to produce two light (essentially massless) particles ` and ¯̀,

X + X̄ $ `+ ¯̀ . (3.3.87)

Moreover, we assume that the light particles are tightly coupled to the cosmic plasma,19 so that

throughout they maintain their equilibrium densities, n` = n
eq

`
. Finally, we assume that there

is no initial asymmetry between X and X̄, i.e. nX = n
X̄
. The Boltzmann equation (3.3.85) for

the evolution of the number of WIMPs in a comoving volume, NX ⌘ nX/s, then is

dNX

dt
= �sh�vi

h
N

2

X � (N eq

X
)2
i
, (3.3.88)

where N eq

X
⌘ n

eq

X
/s. Since most of the interesting dynamics will take place when the temperature

is of order the particle mass, T ⇠ MX , it is convenient to define a new measure of time,

x ⌘ MX

T
. (3.3.89)

To write the Boltzmann equation in terms of x rather than t, we note that

dx

dt
=

d

dt

✓
MX

T

◆
= � 1

T

dT

dt
x ' Hx , (3.3.90)

where we have assumed that T / a
�1 (i.e. g?S ⇡ const. ⌘ g?S(MX)) for the times relevant to

the freeze-out. We assume radiation domination so that H = H(MX)/x2. Eq. (3.3.88) then

becomes the so-called Riccati equation,

dNX

dx
= � �

x2

h
N

2

X � (N eq

X
)2
i

, (3.3.91)

where we have defined

� ⌘ 2⇡2

45
g?S

M
3

X
h�vi

H(MX)
. (3.3.92)

We will treat � as a constant (which in more fundamental theories of WIMPs is usually a good

approximation). Unfortunately, even for constant �, there are no analytic solutions to (3.3.91).

Fig. 3.7 shows the result of a numerical solution for two di↵erent values of �. As expected,

19This would be case case, for instance, if ` and ¯̀ were electrically charged.
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WIMP Miracle⇤

It just remains to relate the freeze-out abundance of dark matter relics to the dark matter

density today:

⌦X ⌘ ⇢X,0

⇢crit,0

=
MXnX,0

3M2

pl
H

2

0

=
MXNX,0s0

3M2

pl
H

2

0

= MXN
1

X

s0

3M2

pl
H

2

0

. (3.3.96)

where we have used that the number of WIMPs is conserved after freeze-out, i.e. NX,0 = N
1

X
.

Substituting N
1

X
= xf/� and s0 ⌘ s(T0), we get

⌦X =
H(MX)

M
2

X

xf

h�vi
g?S(T0)

g?S(MX)

T
3

0

3M2

pl
H

2

0

, (3.3.97)

where we have used (3.3.92) and (3.2.62). Using (3.2.67) for H(MX), gives

⌦X =
⇡

9

xf

h�vi

✓
g?(MX)

10

◆
1/2

g?S(T0)

g?S(MX)

T
3

0

M
3

pl
H

2

0

. (3.3.98)

Finally, we substitute the measured values of T0 and H0 and use g?S(T0) = 3.91 and g?S(MX) =

g?(MX):

⌦Xh
2 ⇠ 0.1

⇣
xf

10

⌘✓
10

g?(MX)

◆
1/2 10�8GeV�2

h�vi . (3.3.99)

This reproduces the observed dark matter density if
p
h�vi ⇠ 10�4GeV�1 ⇠ 0.1

p
GF .

The fact that a thermal relic with a cross section characteristic of the weak interaction gives the

right dark matter abundance is called the WIMP miracle.

3.3.3 Recombination

An important event in the history of the early universe is the formation of the first atoms. At

temperatures above about 1 eV, the universe still consisted of a plasma of free electrons and

nuclei. Photons were tightly coupled to the electrons via Compton scattering, which in turn

strongly interacted with protons via Coulomb scattering. There was very little neutral hydrogen.

When the temperature became low enough, the electrons and nuclei combined to form neutral

atoms (recombination20), and the density of free electrons fell sharply. The photon mean free

path grew rapidly and became longer than the horizon distance. The photons decoupled from the

matter and the universe became transparent. Today, these photons are the cosmic microwave

background (see Chapter 7).

Saha Equilibrium

Let us start at T > 1 eV, when baryons and photons were still in equilibrium through electro-

magnetic reactions such as

e
� + p

+ $ H+ � . (3.3.100)

20Don’t ask me why this is called recombination; this is the first time electrons and nuclei combined.
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Boltzmann
Saha
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decoupling
CMB

plasma neutral hydrogen

Figure 3.8: Free electron fraction as a function of redshift.

Hydrogen Recombination

Let us define the recombination temperature Trec as the temperature where22 Xe = 10�1

in (3.3.108), i.e. when 90% of the electrons have combined with protons to form hydrogen.

We find

Trec ⇡ 0.3 eV ' 3600K . (3.3.109)

The reason that Trec ⌧ BH = 13.6 eV is that there are very many photons for each hydrogen

atom, ⌘ ⇠ 10�9 ⌧ 1. Even when T < BH, the high-energy tail of the photon distribution

contains photons with energy E > BH so that they can ionize a hydrogen atom.

Exercise.—Confirm the estimate in (3.3.109).

Using Trec = T0(1 + zrec), with T0 = 2.7K, gives the redshift of recombination,

zrec ⇡ 1320 . (3.3.110)

Since matter-radiation equality is at zeq ' 3500, we conclude that recombination occurred

in the matter-dominated era. Using a(t) = (t/t0)2/3, we obtain an estimate for the time of

recombination

trec =
t0

(1 + zrec)3/2
⇠ 290 000 yrs . (3.3.111)

Photon Decoupling

Photons are most strongly coupled to the primordial plasma through their interactions with

electrons

e
� + � $ e

� + � , (3.3.112)

22There is nothing deep about the choice Xe(Trec) = 10�1. It is as arbitrary as it looks.

Thomson
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Figure 3.9: Numerical results for helium production in the early universe.

Step 0: Equilibrium Abundances

In principle, BBN is a very complicated process involving many coupled Boltzmann equations

to track all the nuclear abundances. In practice, however, two simplifications will make our life

a lot easier:

1. No elements heavier than helium.

Essentially no elements heavier than helium are produced at appreciable levels. So the

only nuclei that we need to track are hydrogen and helium, and their isotopes: deuterium,

tritium, and 3He.

2. Only neutrons and protons above 0.1 MeV.

Above T ⇡ 0.1 MeV only free protons and neutrons exist, while other light nuclei haven’t

been formed yet. Therefore, we can first solve for the neutron/proton ratio and then use

this abundance as input for the synthesis of deuterium, helium, etc.

Let us demonstrate that we can indeed restrict our attention to neutrons and protons above

0.1 MeV. In order to do this, we compare the equilibrium abundances of the di↵erent nuclei:

• First, we determine the relative abundances of neutrons and protons. In the early universe,

neutrons and protons are coupled by weak interactions, e.g. �-decay and inverse �-decay

n+ ⌫e $ p
+ + e

�
,

n+ e
+ $ p

+ + ⌫̄e .
(3.3.128)

Let us assume that the chemical potentials of electrons and neutrinos are negligibly small,
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so that µn = µp. Using (3.3.101) for neq

i
, we then have

✓
nn

np

◆

eq

=

✓
mn

mp

◆
3/2

e
�(mn�mp)/T . (3.3.129)

The small di↵erence between the proton and neutron mass can be ignored in the first

factor, but crucially has to be kept in the exponential. Hence, we find
✓
nn

np

◆

eq

= e
�Q/T

, (3.3.130)

where Q ⌘ mn �mp = 1.30 MeV. For T � 1 MeV, there are therefore as many neutrons

as protons. However, for T < 1 MeV, the neutron fraction gets smaller. If the weak

interactions would operate e�ciently enough to maintain equilibrium indefinitely, then the

neutron abundance would drop to zero. Luckily, in the real world the weak interactions

are not so e�cient.

• Next, we consider deuterium (an isotope of hydrogen with one proton and one neutron).

This is produced in the following reaction

n+ p
+ $ D+ � . (3.3.131)

Since µ� = 0, we have µn+µp = µD. To remove the dependence on the chemical potentials

we consider ✓
nD

nnnp

◆

eq

=
3

4

✓
mD

mnmp

2⇡

T

◆
3/2

e
�(mD�mn�mp)/T , (3.3.132)

where, as before, we have used (3.3.101) for n
eq

i
(with gD = 3 and gp = gn = 2). In the

prefactor, mD can be set equal to 2mn ⇡ 2mp ⇡ 1.9 GeV, but in the exponential the small

di↵erence between mn +mp and mD is crucial: it is the binding energy of deuterium

BD ⌘ mn +mp �mD = 2.22 MeV . (3.3.133)

Therefore, as long as chemical equilibrium holds the deuterium-to-proton ratio is
✓
nD

np

◆

eq

=
3

4
n
eq

n

✓
4⇡

mpT

◆
3/2

e
BD/T

. (3.3.134)

To get an order of magnitude estimate, we approximate the neutron density by the baryon

density and write this in terms of the photon temperature and the baryon-to-photon ratio,

nn ⇠ nb = ⌘ n� = ⌘ ⇥ 2⇣(3)

⇡2
T
3
. (3.3.135)

Eq. (3.3.134) then becomes
✓
nD

np

◆

eq

⇡ ⌘

✓
T

mp

◆
3/2

e
BD/T

. (3.3.136)

The smallness of the baryon-to-photon ratio ⌘ inhibits the production of deuterium until

the temperature drops well beneath the binding energy BD. The temperature has to drop

enough so that eBD/T can compete with ⌘ ⇠ 10�9. The same applies to all other nuclei. At

temperatures above 0.1 MeV, then, virtually all baryons are in the form of neutrons and

protons. Around this time, deuterium and helium are produced, but the reaction rates are

by now too low to produce any heavier elements.
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where in the last equality we used that T / a
�1. During BBN, we have

H =

s
⇢

3M2

pl

=
⇡

3

r
g?

10

Q2

Mpl| {z }
⌘H1 ⇡ 1.13s�1

1

x2
, with g? = 10.75 . (3.3.145)

Eq. (3.3.142) then becomes
dXn

dx
=

�n

H1

x
⇥
e
�x �Xn(1 + e

�x)
⇤
. (3.3.146)

Finally, we need an expression for the neutron-proton conversion rate, �n. You can find a sketch of
the required QFT calculation in Dodelson’s book. Here, I just cite the answer

�n(x) =
255

⌧n
· 12 + 6x+ x

2

x5
, (3.3.147)

where ⌧n = 886.7 ± 0.8 sec is the neutron lifetime. One can see that the conversion time ��1

n
is

comparable to the age of the universe at a temperature of ⇠ 1 MeV. At later times, T / t
�1/2 and

�n / T
3 / t

�3/2, so the neutron-proton conversion time ��1

n
/ t

3/2 becomes longer than the age of
the universe. Therefore we get freeze-out, i.e. the reaction rates become slow and the neutron/proton
ratio approaches a constant. Indeed, solving eq. (3.3.146) numerically, we find (see fig. 3.9)

X
1

n
⌘ Xn(x = 1) = 0.15 . (3.3.148)

Step 2: Neutron Decay

At temperatures below 0.2 MeV (or t & 100 sec) the finite lifetime of the neutron becomes

important. To include neutron decay in our computation we simply multiply the freeze-out

abundance (3.3.148) by an exponential decay factor

Xn(t) = X
1

n e
�t/⌧n =

1

6
e
�t/⌧n , (3.3.149)

where ⌧n = 886.7± 0.8 sec.

Step 3: Helium Fusion

At this point, the universe is mostly protons and neutron. Helium cannot form directly because

the density is too low and the time available is too short for reactions involving three or more

incoming nuclei to occur at any appreciable rate. The heavier nuclei therefore have to be built

sequentially from lighter nuclei in two-particle reactions. The first nucleus to form is therefore

deuterium,

n+ p
+ $ D+ � . (3.3.150)

Only when deuterium is available can helium be formed,

D + p
+ $ 3He + � , (3.3.151)

D + 3He $ 4He + p
+
. (3.3.152)

Since deuterium is formed directly from neutrons and protons it can follow its equilibrium

abundance as long as enough free neutrons are available. However, since the deuterium binding
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Figure 3.9: Numerical results for helium production in the early universe.

Step 0: Equilibrium Abundances

In principle, BBN is a very complicated process involving many coupled Boltzmann equations

to track all the nuclear abundances. In practice, however, two simplifications will make our life

a lot easier:

1. No elements heavier than helium.

Essentially no elements heavier than helium are produced at appreciable levels. So the

only nuclei that we need to track are hydrogen and helium, and their isotopes: deuterium,

tritium, and 3He.

2. Only neutrons and protons above 0.1 MeV.

Above T ⇡ 0.1 MeV only free protons and neutrons exist, while other light nuclei haven’t

been formed yet. Therefore, we can first solve for the neutron/proton ratio and then use

this abundance as input for the synthesis of deuterium, helium, etc.

Let us demonstrate that we can indeed restrict our attention to neutrons and protons above

0.1 MeV. In order to do this, we compare the equilibrium abundances of the di↵erent nuclei:

• First, we determine the relative abundances of neutrons and protons. In the early universe,

neutrons and protons are coupled by weak interactions, e.g. �-decay and inverse �-decay

n+ ⌫e $ p
+ + e

�
,

n+ e
+ $ p

+ + ⌫̄e .
(3.3.128)

Let us assume that the chemical potentials of electrons and neutrinos are negligibly small,
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The Standard Model of Particle Physics 
fails to explain:

Dark Matter

Dark Energy

Quantum Gravity

Inflation

Matter-antimatter

All related to physics of the early universe

Aim: Understanding structure, evolution & origin of the universe

Relies on two “Standard Models”

- of particle physics

- of cosmology (Hubble diagram, BBN, CMB)

THEORETICAL COSMOLOGY
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