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The genesis of quantum theory and quantum mechanics

- Quantum theory emerged from 1900
within a network of only a handful of 2]

vo <X >
institutions. % %ﬁ

- Quantum mechanics developed in 1925-
1927 in close exchange between (mainly)
Gottingen, Copenhagen, and Munich.

&. X

- Since the early 1920s: exchange of
young students, especially between Max
Born, Niels Bohr, and Arnold Sommerfeld
(“Knabenphysik”).
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Unlike the relativity revolution that N, ®

centered on Einstein, the quantum ottingen o

revolution was a collaborative and : Zuric; Munich -
multicentric endeavor that involved

several dozen actors.

- This presents a challenge to traditional e 5 . <
models of linear story-telling ) ™ o

storiography @ o W
o §
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Quantum historiography

Not just quantum theory, but also the writing of its history, is therefore an
interdisciplinary and highly collaborative enterprise involving professional
historians and philosophers of physics as well as physicists all over the world.

We have come a long way from actors’ histories (Werner Heisenberg, Friedrich
Hund) to early professional accounts (Thomas S. Kuhn, Max Jammer) to an
international community of quantum historians who regularly meet (SYHQ at this
conference; HQ-5 in Brazil this summer) and who back in 2020 were among the
initiators of this year’s quantum century celebrations.

Fifth Solvay Conference in
Bruxelles, October 1927
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Outline of my talk

1 Backdrop: Key Milestones in Quantum Theory
2 Main argument: The Role of Applications

3 Three Examples of Early Applications

4 Conclusion and Outlook: Why apply?



1 Backdrop: Key Milestones in Quantum Theory
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Key milestones in quantum theory

1900 Planck (quantum of action)

Max Planck (1858-1947)

8Thy3 1

p(v,T)dv = 3 hu/RT 1dV

black-body radiation law
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Key milestones in quantum theory

First Solvay Conference, 1911

8Thys 1

p(v, T)dv = 3 ohu/KT _ |

Max Planck
black-body radiation law (1858-1947)
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Key milestones in quantum theory

1900 Planck (quantum of action)

1905 Einstein (light quantum)

Albert Einstein (1879-1955)

E = hv

energy of a light quantum
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Key milestones in quantum theory

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

Niels Bohr (1885-1962)
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STRUCTURE OF THE RADIUM ATOM

1912 Manchester structure of the Radium atom
memorandum according to Bohr’s model

atomic model
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Key milestones in quantum theory

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)

Arnold Sommerfeld (1868-1951) and
Niels Bohr in Lund, Sweden

Bohr-Sommerfeld (phase-integral)
quantization condition

%pdq = nh
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Key milestones in quantum theory

1900 Planck (quantum of action)

1905 Einstein (light quantum)

Paul S. Epstein  Karl Schwarzschild

(1883-1966) (1873-1916) |
1913 Bohr (Bohr atomic model)

oW oW

L S

1916 Sommerfeld (quantization condition)
pi = Fr Wi = o

1916 Epstein and Schwarzschild
(action and angle variables)

W= W(guy «++ Q75 W1y +++ “f)~l
l

action and angle variables
(Hamilton-Jacobi theory)

model of the hydrogen
molecule ion
according to Pauli and
the old quantum
theory (Deutsches
Museum Munich)




° UNIVERSITY UF CUPENHAGEN 31 March 2025 12

Key milestones in quantum theory

j

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

Copenhagen conference (1936). Front row,
from left: Pauli, Jordan, Heisenberg, Born

“sharpening” of Bohr’s correspondence principle |
1925 Heisenberg, Born, Jordan

[ — \ (matrix mechanics)
A B
—qgp = —— 1 S
p q qp 2Jt 1 w 4077 ’/ Z
; H .

“Umdeutung” » matrix mechanics
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Key milestones in quantum theory

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

Erwin Schrodinger (1887-1961)

2m 62 1925 Heisenberg, Born, Jordan
A A 5 E+—|y= (matrix mechanics)
K 1926 Schrodinger (wave mechanics)

wave equation
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Key milestones in quantum theory

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

Erwin Schrodinger (1887-1961)

2m 62 1925 Heisenberg, Born, Jordan
A A 5 E+—|y= (matrix mechanics)
K 1926 Schrodinger (wave mechanics)

wave equation

equivalence!
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Key milestones in quantum theory

1900 Planck (quantum of action)

1905 Einstein (light quantum)

Werner Heisenberg, 1927 Niels Bohr at Como, 1927

Ag-Ap ~h

uncertainty, complementarity »
“Copenhagen interpretation”

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

1925 Heisenberg, Born, Jordan
(matrix mechanics)

1926 Schrodinger (wave mechanics)

1927 Bohr (“Copenhagen” interpretation)
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Key milestones in quantum theory

N
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| i 1900 Planck (quantum of action)

1905 Einstein (light quantum)
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Fifth Solvay Conference in Bruxelles, October 1927 1913 Bonr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

We consider quantum mechanics to be a
closed theory [geschlossene Theorie],
whose fundamental physical and mathematical
assumptions are ho longer susceptible

of any modification. 1925 Heisenberg, Born, Jordan

(matrix mechanics)

Max Born and Werner Heisenberg in 1926 Schrodinger (wave mechanics)

their report at the Fifth Solvay
Conference, October 1927, quoted
after Bacciagaluppi and Valentini,
Quantum Theory at the Crossroads
(Cambridge: CUP, 2013).
R G WetrtsanssEaS

1927 Bohr (“Copenhagen” interpretation)
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Some historiographical terminology

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

1925 Heisenberg, Born, Jordan
(matrix mechanics)

1926 Schrodinger (wave mechanics)

1927 Bohr (“Copenhagen” interpretation)
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Some historiographical terminology

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

1925 Heisenberg, Born, Jordan
(matrix mechanics)

1926 Schrodinger (wave mechanics)

1927 Bohr (“Copenhagen” interpretation)
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Some historiographical terminology

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

1925 Heisenberg, Born, Jordan
(matrix mechanics)

1926 Schrodinger (wave mechanics)

1927 Bohr (“Copenhagen” interpretation)
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Some historiographical terminology

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

1925 Heisenberg, Born, Jordan
(matrix mechanics)

1926 Schrodinger (wave mechanics)

Quantum
Mechanics 1927 Bohr (“Copenhagen” interpretation)
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Some historiographical terminology

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

1925 Heisenberg, Born, Jordan
(matrix mechanics)

1926 Schrodinger (wave mechanics
Quantum ger | )

Mechanics

1927 Bohr (“Copenhagen” interpretation)
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Some historiographical terminology

“Classical physics”

1900 Planck (quantum of action)

1905 Einstein (light quantum)

1913 Bohr (Bohr atomic model)

1916 Sommerfeld (quantization condition)
1916 Epstein and Schwarzschild

(action and angle variables)

1925 Heisenberg, Born, Jordan
(matrix mechanics)

1926 Schrodinger (wave mechanics
Quantum ger | )

Mechanics

1927 Bohr (“Copenhagen” interpretation)




2 Main argument: The Role of Applications
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Original papers from ca. 1925-1935
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Original papers from ca. 1925-1935

quantum mechanical
formalism
(Heisenberg 1925,
Born&Jordan 1925,
Schrodinger
1926a,b,d,e, ...)
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Original papers from ca. 1925-1935

quantum mechanical
formalism
(Heisenberg 1925,
Born&Jordan 1925,
Schrodinger
1926a,b,d,e, ...)

interpretation

(Born 1926a,b;
Heisenberg 1927,
Bohr 1928a,b, EPR
1935)
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Original papers from ca. 1925-1935

quantum mechanical
formalism
(Heisenberg 1925,
Born&Jordan 1925,
Schrodinger
1926a,b,d,e, ...)

interpretation
(Born 1926a,b;
Heisenberg 1927,

Bohr 1928a,b, EPR =
1935) \
\

applications of
quantum
mechanics
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Original papers from ca. 1925-1935

quantum mechanical
formalism
(Heisenberg 1925,
Born&Jordan 1925,
Schrodinger
1926a,b,d,e, ...)

interpretation
(Born 1926a,b;
Heisenberg 1927,
Bohr 1928a,b, EPR
1935)

applications of
quantum
mechanics

Q: What role (if any?) did applications
of quantum mechanics play for the
foundations of the theory?
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Dimensions of applying a theory

1. Validation of the theory through problem solving
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Dimensions of applying a theory

1. Validation of the theory through problem solving

Simultaneously with the progressive elucidation of the general
laws of quantum mechanics, new evidence for the
empirical correctness of this theory has been provided
by a large number of applications by various authors.

Jordan, P. (1927). Die Entwicklung der neuen
Quantenmechanik. Die Naturwissenschaften, 15(3), 614—

23, on 616.
e e T ————

Pascual Jordan
(1902-1980)
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Dimensions of applying a theory

1. Validation of the theory through problem solving

2. Extending range of validity of the theory into new empirical domains
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Dimensions of applying a theory

1. Validation of the theory through problem solving

2. Extending range of validity of the theory into new empirical domains

Friedrich Hund
(1896-1997)

With the probability interpretation and transformation theory,
the principles of quantum mechanics were by and large known
at the end of 1926. Since spring 1926, the Schrodinger
equation had been a convenient method for solving the
simpler problems, adapted to the mathematical knowledge of
physicists at that time. Around 1927, these circumstances led
to a flood of applications and the development of
practical methods of calculation

Hund, E (1967). Geschichte der Quantentheorie
(Mannheim: BI), on 167.

pammmaen e o



.. UNIVERSITY UF CUPENHAGEN 31 March 2025 33

Dimensions of applying a theory

1. Validation of the theory through problem solving

2. Extending range of validity of the theory into new empirical domains

Satisfied that the theory “works,’ since it provided
unambiguous answers whenever invoked, physicists engaged
themselves rather in solving problems which so far had
defied all previous attempts or which promised to open up
new avenues of research.The year 1927 thus not only
became the year in which the quantum-mechanical
formalism, in all its essential points, received a formal
completion and a consistent interpretation; 1927 also
witnessed a veritable avalanche of elaborations and
applications of the new conceptions and led to new
insights in atomic physics to an unprecedented extent.

Max Jammer

Max Jammer, The Conceptual Development of Quantum Mechanics (1915-2010)
(New York: McGraw Hill, 1966), on 362 (my emphasts).

L e —— manaae
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Dimensions of applying a theory

1. Validation of the theory through problem solving

2. Extending range of validity of the theory into new empirical domains

Were applications thus just a “flood” or “avalanche” of
normal science and problem solving in which an
otherwise completed formalism was put to practical use?

34
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Dimensions of applying a theory

1. Validation of the theory through problem solving

2. Extending range of validity of the theory into new empirical domains

Were applications thus just a “flood” or “avalanche” of
normal science and problem solving in which an
otherwise completed formalism was put to practical use”

No—there is a third dimension of applying a theory
that played an important and constitutive role in the
history of quantum mechanics.

35
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Dimensions of applying a theory

1. Validation of the theory through problem solving
2. Extending range of validity of the theory into new empirical domains

3. Further articulating, modifying—or potentially even overthrowing—the
theory and elucidating its meaning and interpretation
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The open-endedness of early guantum mechanics

- Many actors did not see quantum mechanics as a finished
formalism, but expected another imminent theoretical
innovation.

Erwin Schrodinger and Fritz London
(1900-1954) in Berlin, 1928
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The open-endedness of early guantum mechanics

Many actors did not see quantum mechanics as a finished
formalism, but expected another imminent theoretical
innovation.

In the old quantum theory, it had proven a viable and
successful research strategy to extend and clarify the theory
through applications.

ol s N

Erwin Schrodinger and Fritz London
(1900-1954) in Berlin, 1928
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The open-endedness of early guantum mechanics

Many actors did not see quantum mechanics as a finished
formalism, but expected another imminent theoretical
innovation.

In the old quantum theory, it had proven a viable and
successful research strategy to extend and clarify the theory
through applications.

Erwin Schrodinger and Fritz London
(1900-1954) in Berlin, 1928

An hypothesis proves its worth not before being
applicable to other areas than the one for
which it was formulated originally. From this point of
view, the quantum hypothesis has stood the test
brilliantly... Recently, many other phenomena have
been identified, in areas such as magnetism or the
conduction of electricity or heat, which certainly can
only be explained through quantum theory.

Peter Debye, Inaugural Lecture, Utrecht, 1913
e —— —ecetmmmpmSOEY

Peter Debye
(1884—-1966)
in 1912
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The open-endedness of early guantum mechanics

Many actors did not see quantum mechanics as a finished
formalism, but expected another imminent theoretical
innovation.

In the old quantum theory, it had proven a viable and
successful research strategy to extend and clarify the theory
through applications.

DS W |

+ Obvious places to look for an extension of quantum mechanics
were its relativistic extension, the study of the atomic nucleus,
but also aperiodic phenomena, many-body systems in atomic
and molecular physics, spin, and quantum statistics.

Erwin Schrodinger and Fritz London
(1900-1954) in Berlin, 1928
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The open-endedness of early guantum mechanics

Many actors did not see quantum mechanics as a finished
formalism, but expected another imminent theoretical
innovation.

In the old quantum theory, it had proven a viable and
successful research strategy to extend and clarify the theory
through applications.

+ Obvious places to look for an extension of quantum mechanics
were its relativistic extension, the study of the atomic nucleus, Erwin Schrodinger and Fritz London
but also aperiodic phenomena, many-body systems in atomic (1900-1954) in Berlin, 1928
and molecular physics, spin, and quantum statistics.

- The cut we sometimes make between “foundations” and (mere)
“applications” is artificial and anachronistic: Applications
played important functional roles in the development of quantum
mechanics into a finished, canonized theory as it can be found in
today’s textbooks.
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The open-endedness of early guantum mechanics

Many actors did not see quantum mechanics as a finished
formalism, but expected another imminent theoretical
innovation.

In the old quantum theory, it had proven a viable and
successful research strategy to extend and clarify the theory
through applications.

+ Obvious places to look for an extension of quantum mechanics
were its relativistic extension, the study of the atomic nucleus, Erwin Schrodinger and Fritz London
but also aperiodic phenomena, many-body systems in atomic (1900-1954) in Berlin, 1928
and molecular physics, spin, and quantum statistics.

- The cut we sometimes make between “foundations” and (mere)
“applications” is artificial and anachronistic: Applications
played important functional roles in the development of quantum
mechanics into a finished, canonized theory as it can be found in
today’s textbooks.

Realizing this creative tension between foundations and
applications in the practice of the actors also makes us broaden
our outlook on where to look for actors’ statements on the
foundations and interpretation of quantum mechanics.



3 Three Examples of Early Applications
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Three Examples of Early Applications

» Scattering and Born’s probability interpretation

 Complex spectra, quantum statistics, and resonant
exchange

* Tunneling in molecules and nuclel
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Three Examples of Early Applications

» Scattering and Born'’s probability interpretation

 Complex spectra, quantum statistics, and resonant
exchange

* Tunneling in molecules and nuclel
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Scattering and Born’s probability interpretation

In June-July 1926, Max Born, submits two
papers on “quantum mechanics of scattering
processes” that are famous for his introduction
of the probability interpretation of
Schrédinger’s wave function.

Max Born
(1882-1970)
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Scattering and Born’s probability interpretation

In June-July 1926, Max Born, submits two
papers on “quantum mechanics of scattering
processes” that are famous for his introduction
of the probability interpretation of
Schrodinger’s wave function.

“Born’s aim in his first collision paper was not to
contribute to the clarification of interpretational
issues, as his later recollections suggest, but to solve
a particular (yet crucial) scientific problem.

The aim of [the] collision papers was not to argue the
reality of particles and indispensability of indeterminism,
but rather to describe and theoretically to substantiate
Bohr’s concepts of ‘quantum jumps’—the discrete
discontinuous energy changes within an atom. Born saw
direct evidence for the existence of discrete energy
levels in the Franck-Hertz experiments, which he
sought to explicate theoretically.”

Mara Beller, “Born's Probabilistic Interpretation: A Case
Study of “Concepts in Flux,” SHPS 21, no. 4 (1990): 563-
588, on 564.

——eeemm———

S ———

Max Born
(1882-1970)
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Three Examples of Early Applications

» Scattering and Born’s probability interpretation

 Complex spectra, quantum statistics, and resonant
exchange

* Tunneling in molecules and nuclel
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Complex spectra: Pauli’s exclusion principle

* Already before Quantum Mechanics in January 1925,
Wolfgang Pauli postulates a novel rule for complex
spectra: the Pauli exclusion principle (“housing
office for equivalent electrons”).

* No derivation or physical interpretation available.
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Complex spectra: Pauli’s exclusion principle

* Already before Quantum Mechanics in January 1925,
Wolfgang Pauli postulates a novel rule for complex
spectra: the Pauli exclusion principle (“housing
office for equivalent electrons”).

* No derivation or physical interpretation available.

“The problem of a further justification of the general
rule over the occurrence of equivalent electrons in the
atom ... likely can only be successfully tackled after a
future deepening of the fundamental principles of
quantum theory.”
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Abschusses der Elektronengruppen im Atom mit der
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Complex spectra: Pauli’s exclusion principle

* Already before Quantum Mechanics in January 1925,
Wolfgang Pauli postulates a novel rule for complex
spectra: the Pauli exclusion principle (“housing
office for equivalent electrons”).

* No derivation or physical interpretation available.

“The problem of a further justification of the general
rule over the occurrence of equivalent electrons in the
atom ... likely can only be successfully tackled after a
future deepening of the fundamental principles of
quantum theory.”

Wolfgang Pauli, “Uber den Zusammenhang des
Abschusses der Elektronengruppen im Atom mit der
Komplexstruktur der Spektren,” Zeitschrift Flr Physik 31
(1925): 765783, on 783.
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* However, even the deepening of fundamental

principles brought along by quantum mechanics at
first did not provide a lead on how to tackle the
physical interpretation of the exclusion principle.

* This only occurred in the context of applications.
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Wolfgang Pauli
(1900-1958)
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Complex spectra: Fermi statistics

Enrico Fermi
(1901-1954)
in 1927
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* |In March 1926, Enrico Fermi submits a paper
on the quantization of the ideal monatomic gas
and realizes that in order to account for
degeneracy, he needs something in addition
to the quantization rules of the old quantum
theory.

“We therefore conjecture that the quantization
of ideal gases necessitates an additional rule
[Pauli’s exclusion principle] to complement
Sommerfeld’s quantization conditions.”

Enrico Fermi, “Zur Quantelung des idealen
einatomigen Gases,” Zeitschrift fir Physik 36,
no. 1 (1926): 902-912, on 904 .

R ——— —————nmestER




.. UNIVERSITY UF CUPENHAGEN 31 March 2025 53

Complex spectra: Fermi statistics

* |In March 1926, Enrico Fermi submits a paper
on the quantization of the ideal monatomic gas
and realizes that in order to account for
degeneracy, he needs something in addition
to the quantization rules of the old quantum
theory.

“We therefore conjecture that the quantization
of ideal gases necessitates an additional rule
[Pauli’s exclusion principle] to complement

S ke s A st S Sommerfeld’s quantization conditions.”
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Enrico Fermi | mmass s mosss s
(1901-1954) Ho T TR W Enrico Fermi, “Zur Quantelung des idealen
in 1927 S e einatomigen Gases,” Zeitschrift fir Physik 36,
T Y no. 1 (1926): 902-912, on 904 .
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e - Along the way, Fermi shows that a gas of
E— particles obeying Pauli’s exclusion principle
satisfies a new statistics: Fermi statistics.
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Complex spectra: Dirac many-particle wavefunctions

* In August 1926, Paul Dirac independently
derives similar results in a more general way
from the formalism of quantum mechanics.

“Thus the symmetrical eigenfunctions alone or
the antisymmetrical eigenfunctions alone give a
complete solution of the problem.The theory at
present is incapable of deciding which
solution is the correct one.”

Paul Adrien Maurice Dirac, “On the Theory of Paul Dirac
Quantum Mechanics,” Proceedings of the Royal 1902-1983
Society of London. Series A 112, no. 762 (1926): ( B )
661-77, on 669.
« Symmetrical eigenfunctions: Bose-Einstein, oy P (1) Dy (23) -0 by, (a),
correct for light quanta.
« Antisymmetrical eigenfunctions: Pauli Ym (1), Da (2) ... P, (1)
y
";‘M (2) bl "'H": (r) |

exclusion principle trivial consequence, lead to . (1)
“different statistical mechanics,” “probably the o
correct one for gas molecules.”
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Complex spectra: atoms with more than one electron

* In January 1926, Pauli had succeeded in applying matrix mechanics to the hydrogen
atom, just weeks before Schrodinger explained the hydrogen spectrum in the context
of wave mechanics.

* How to extend quantum mechanics to atoms with more than one electron (or
molecules, or gases of many atoms) was absolutely nontrivial.

falels

U

not explained by quantum

explained by early guantum mechanics mechanics until mid-to-late 1926
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Complex spectra: Heisenberg’s resonant exchange

* On 5 May 1926, Heisenberg sends Pauli a hand-drawn
postcard and notes on its back:

“We have found a rather decisive argument that
your exclusion of equivalent orbits is connected
to the distance between singlet and triplet [terms in
neutral Helium]. ... Thus, para- and ortho[helium] do
indeed have different energies, independent of the
interaction between the magnets [i.e., the magnetic

moments associated with potentially “spinning”
Werner Heisenberg (1901-1976) electrons].”
lecturing in Copenhagen, 1936

Heisenberg to Pauli, 5 May 1926
R S mmaeaa

Recto of the postcard. According to
Friedrich Hund, the drawing refers to the
imminent call to an Extraordinariat in
Leipzig that Heisenberg (H) believed would
go to Pauli (P) and threaten to end the
latter’s career as a researcher. Note that it
IS not the ordinary professorship in Leipzig
that Heisenberg would be called to in
1927.
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Complex spectra: Heisenberg’s resonant exchange

* Heisenberg prepares a manuscript titled “Many-body
problem and resonance” in which he introduces the
concept of resonant exchange to account for the
Helium spectrum.

» Shortly before sending the manuscript off from
Copenhagen, he writes to Max Born in Goéttingen

“But | think it is truly a step forward that one sees that
Pauli’s exclusion [principle] and Bose’s rule

Werner Heisenberg (1901-1976) are the same, that they do not contradict
lecturing in Copenhagen, 1936 quantum mechanics, and that one can calculate
s the energy values and so forth quantum-mechanically.”
z¥
61 %
7 Z 2 2% Heisenberg to Born, 26 May 1926, AHQP, M/f No. 18,
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Complex spectra: Heisenberg’s resonant exchange

* Many-body problem paper: Analogy with classical
picture of coupled oscillators: Helium spectrum splits
up into two non-combining subsystems.

* Heisenberg chooses subsystem that does not contain
equivalent orbits (i.e., satisfies Pauli‘s rule), without
further physical justification.

* |In a subsequent paper that Heisenberg described as
“steamrolling” due to the amount of perturbation
theoretical computations it contained, he concluded

Werner Heisenberg (1901-1976)
lecturing in Copenhagen, 1936 “The calculations carried out here were intended to show

that quantum mechanics also enables a
qualitative description of the spectrum for
atoms with two electrons, down to the finest
details [...]. For the selection of the one term system
that does not contain states with equivalent orbits of the
electrons, a clear justification is still missing. It is to be
hoped that when attempting to eliminate this deficiency,
one will reveal deeper-lying connections.’

Werner Heisenberg, “Uber Die Spektra von Atomsystemen
mit zwei Elektronen,” Zeitschrift far Physik 39(1926): 499-
518, on 518.
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Complex spectra: Heisenberg’s resonant exchange

Werner Heisenberg (1901-1976)
lecturing in Copenhagen, 1936

Those deeper-lying connections were later uncovered
by Pauli and Heisenberg: Fermi-Dirac statistics (not
Bose-Einstein statistics) was the one consistent with

Pauli’s exclusion principle.

This finally led to a first consistent integration of the
quantum statistics of the old quantum theory into
quantum mechanics.

Heisenberg’s application-borne concept of resonant
exchange would prove immensely fruitful in many
different areas of physics, e.g., for the Heitler-London
theory of the covalent bond, for Heisenberg’s own
theory of ferromagnetism in solids, for the theory of
nuclear structure, and for the very notion of force
itself.

Likewise, the study of complex spectra continued to
be a source of new quantum-mechanical ideas,
among them Eugene Wigner’s application of group
theory to quantum mechanics, Slater determinants,
and self-consistent field methods.
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Complex spectra: Oppenheimer on Heisenberg’s resonant exchange

J. Robert Oppenheimer
(1904-1967)

“l regarded it as a kind of discovery of the
meaning of quantum theory. ... | think that
if Heisenberg had found that there wasn't
anything new but just that the integrals of wave
functions happened to give the helium spectrum
right, it would have been problem solving.

It was the fact that there was an element of
novelty [resonant exchange] and something
which had never been described before which
turned it from solving a problem into exploring
the content and meaning [of quantum
mechanics].”

J. Robert Oppenheimer interviewed by Thomas
S. Kuhn, 20 November 1963, AHQP
T ———— e e
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Three Examples of Early Applications

» Scattering and Born’s probability interpretation

 Complex spectra, quantum statistics, and resonant
exchange

* Tunneling in molecules and nuclel



o. UNIVERSITY OF CUPENHAGEN

’

—

Friedrich Hund
(1896-1997)

Quantum Tunneling

Bz Dowhuy des Muleholapedborn. L
T V. BN, mmal b Kgeihape
VR S o (Bapguips m M Nessndar 0¥ )

vehild nowes £ o Terdl
o Der Naenipfal Agheh Iy
&4 wen [vege b ool
wil dinew Madl A | ’
VAl avapraden ¢ - — - “‘9
ADaRehts GRET a0 ey 3

[T [T —— N\ 'w

-

: : \ / 3
A4 weminidy ]
whosgve Malibode Msked o W
panicoes | Khozaonn in ey N / S -
| ]
ME o, wd v, de et -——— - i
18en Nornax) =od wnd €, 1 %

Mimusddlie ¢ hmmacn |
Abbind doe badon Ko A {
AV = tebent ot I‘

— | TN ]
A

o
Va\
v U |

31 March 2025 62

In a series of papers written in
Copenhagen and Goéttingen in 1926-
1930, Friedrich Hund explores
molecular spectra and attempts to
systematize their interpretation.

Already in his first paper, submitted in
November 1926 from Copenhagen,
Hund considers wavefunctions in
double potential wells and shows that
there is a continuous transition from
wavefunctions localized in one well to
wavefunctions spanning both wells.

This is the first step towards the
concept of quantum tunneling (the
term itself was first coined in the 1930s).
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Quantum Tunneling

* In Cambridge in 1927-1928, Lothar Nordheim, later
joined by Ralph Fowler, studies the behavior of
electrons at metal surfaces and finds a “remarkable
new phenomenon” that now is part of virtually every
quantum mechanics textbook.

Here a remarkable new phenomenon occurs
which can significantly alter the situation. If the potential
in the intermediate layer is greater than outside the Lothar Nordheim  Ralph H. Fowler
metal, the result that total reflection takes place when (1899-1985) (1889-1944)
the available kinetic energy is not sufficient to overcome

the potential threshold is no longer valid. This is because

the electron density does not disappear immediately after

the jump point, but only decreases exponentially. [...] U
Thus, according to quantum mechanics, some
electrons will pass this threshold, whereas

according to classical theory they would be held back.

L

.
i s ——— ———

Lothar Nordheim,“Zur Theorie der thermischen
Emission und der Reflexion von Elektronen an
Metallen,” Zeitschrift fiir Physik 46, no. 1 (1928):
833—855, on 849,
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Quantum Tunneling

George Gamow burst upon the European community of
physicists like a meteor from outer space. The origin of his
trajectory was distant Leningrad; his point of impact was
Gottingen; the time was mid-June 1928.

Roger H. Stuewer, “Gamow’s Theory of Alpha-Decay”
in The Kaleidoscope of Science, vol. 1, ed. E. Ullmann-
Margalit (Dordrecht: Reidel, 1986), pp.147-186, on 147.

* Soon after his arrival in Gottingen, Gamow explains alpha
decay in nuclei quantum mechanically using tunneling.
Almost simultaneously, Ronald Gurney and Edward
Condon in Princeton arrive at similar results.

N

: N\ o ‘
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George Gamow
7 (1904-1968) with Pauli
in Switzerland, 1930
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Quantum Tunneling

* |Important evidence that quantum mechanics was valid
in the nuclear domain.

 Gamow’s work marks the starting point of nuclear
physics as a subdsicipline of physics.

In my experience nuclear physics starts with the
sudden appearance, one morning in the library of the
Gottingen Institute, of a fair-haired giant, with shortsighted,
half-shut eyes behind his spectacles, who introduced
himself, with a broad smile, by declaring:“l am Gamow.”

LLéon Rosenfeld, “Nuclear Reminiscences,” in Cosnology,
Fusion & Other Matters: George Gamow Memorial V olume, ed.
Frederick Reines (Boulder, CO: Associated University :
Press, 1972)., pp. 289-99, on 289 (quoted after Stuewer 2
2018).

R — R — George Gamow
(1904-1968) with Pauli

iNn Switzerland, 1930
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Many further examples:

* Atoms and Molecules:

Diatomic molecules (1926 Schrbdinger: entanglement).

Molecule formation (1926 Hund: adiabatic transitions between free and bound atoms)
Molecular structure (1927 Born-Oppenheimer approximation).

Covalent bond (1927 Heitler-London: exchange forces).

Many-electron atoms and ions (1927 Hartree, 1930 Fock: self-consistent field methods)

* Solids:

Paramagnetism (1926 Pauli: Fermi surface in solids).

Electron theory of metals (1927 Sommerfeld: Fermi-Dirac electron gas in metals).
Ferromagnetism (1928 Heisenberg: exchange forces).

Anomalous Hall effect (1928 Peierls: hole conduction)

Insulators and thermal conductivities (1929 Peierls: Umklapp processes)

Long mean-free path of electrons in metals (1929 Bloch waves).

Valence electrons in crystals (1931 Kronig and Penney: band structure and band gaps)
... (Brillouin zone, Wigner-Seitz cell, quasiparticles...)

* Nuclei:

Nuclear structure (1932-3 Heisenberg: nuclear exchange forces)
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Conclusion and Outlook: Why apply?

- Applications uncovered avenues to a potential extension or even
revision of quantum mechanics.

- Applications recovered successes of the old quantum theory by
integrating them into the new formalism (e.g., quantum statistics).

- Applications helped extend the domain of applicability of quantum
mechanics far beyond its initially narrow range of application.

- Applications contributed to a deeper understanding of what the
new gquantum-mechanical formalism really meant.

In that vein, applications gave rise to novel (often intermediate-
level) concepts (resonant exchange, tunneling, Bloch wave, spin
waves, Brillouin zone, Fermi surface) and techniques of computation/
approximation (Rayleigh-Schrddinger perturbation theory, Slater
determinants, Pauli spin matrices, Born-Oppenheimer
approximation).

- Applications thus established the generality of quantum
mechanics in practice and not just in theory and helped bridge
the gap between fundamental laws and empirical observations.

31 March 2025 68

Wolfgang Pauli (1900-
1958) and George
Gamow (1904-1968)
in Copenhagen
(unknown date)
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Conclusion and Outlook: Why apply?

- Applications of quantum mechanics were also at the
outset of new, fruitful research fields and
subdisciplines that emerged during the twentieth

century: quantum chemistry, solid state physics, nuclear
physics.

- When a theoretical formalism gets applied to new
domains, it is never a one-way street.
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Conclusion and Outlook: Why apply?

- Applications of quantum mechanics were also at the
outset of new, fruitful research fields and
subdisciplines that emerged during the twentieth
century: quantum chemistry, solid state physics, nuclear
physics.

- When a theoretical formalism gets applied to new
domains, it is never a one-way street.

- Rather, the new fields contributed new concepts and
techniques to quantum mechanics as we know it today.

- Quite generally, “applying” a theory to a different
empirical phenomenon likely affects not only how we
explain that phenomenon, but at least potentially also
has a back-effect on the theory itself.

- There are prominent examples of this between, e.g.,
condensed matter and high energy physics during the
course of the twentieth century.

- Applications are thus not always “mere problem
solving” but sometimes a promising strategy to better
understand a theory’s foundations.
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Conclusion and Outlook: Why apply?

- Therefore, instead of reading a handful of papers over and

over again, researchers interested in the foundations and
interpretation of quantum mechanics should study more
papers, by a broader range of authors, and also on more
mundane and applied topics such as complex atoms,
molecules, solids, and nuclel.

- Sadly, most of this literature is not available in English

(van der Waerden never published Volume 2 of his Sources
of Quantum Mechanics...).

- Such a broadened purview casts doubt on the dominant

narrative of an “interpretational dark age” in the history of
quantum physics from the mid-1930s until the early 1960s.

In light of claims of an ongoing “second quantum
revolution” that centers on practical applications in
quantum optics, quantum information, and quantum
computing, we should expect that these applications are
affecting our views on the foundations of quantum
physics.

71

Bohr, Pauli, Nordheim, Fues,
Rosenfeld in Auditorium A,
Copenhagen, 1929
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