The Dawn of Multi-messenger Astrophysics

Anna Franckowiak

DPG Frühjahrstagung, April 1, 2025

The Multi-Messenger Picture

The Multi-Messenger Picture

Birth of Multi-messenger Astronomy with Neutrinos

Astronomy Picture of the Day

June 5, 1998

The Sun in Neutrinos seen by Super-Kamiokande

RUB

Combining neutrinos and electromagnetic information led to:

Birth of Multi-messenger Astronomy with Neutrinos

Astronomy Picture of the Day

June 5, 1998

The Sun in Neutrinos seen by Super-Kamiokande

Combining neutrinos and electromagnetic information led to:

The solar neutrino problem

Birth of Multi-messenger Astronomy with Neutrinos

Astronomy Picture of the Day

June 5, 1998

The Sun in Neutrinos seen by Super-Kamiokande

RUB

Combining neutrinos and electromagnetic information led to:

- Confirmation of model of fusion
- New understanding of the standard model of particle physics

Optical detection of SN1987A in LMC

during supernova before supernova

Optical detection of SN1987A in LMC

during supernova before supernova

MeV neutrino burst

First direct confirmation of our basic picture of a stellar collapse

Neutrino cooling and neutrino-driven wind ($t \approx 10$ s)

Woosely & Janka, Nature Physics 2005

First direct confirmation of our basic picture of a stellar collapse

Constraints on exotic physics (e.g. axions)

Woosely & Janka, Nature Physics 2005

RUB

Lella et al. PRD 109 (2024)

Are we ready for the next neutrino-detected supernova?

Multi-messenger Signature of a Supernova

Supernova early warning system

MeV neutrino burst as trigger for electromagnetic supernovae observations

RUB

https://snews2.org/

Supernova localization

Coordinated follow-up observations with widefield-of-view instruments are necessary

Delay between neutrino burst and optical signal: **2 min to 2 days**

Catching the next Galactic Neutrino Supernova

The Multi-Messenger Picture

RUB

Revealing the cosmic-ray sources

Neutrinos can unambiguously reveal the sources of cosmic rays

Argüelles, Halzen, Kurahashi, arXiv:2405.17623 (2024)

RUB

Have we seen cosmic neutrinos?

Milestone: Detection of Diffuse Neutrino Flux

What are the source?

Galactic Contribution

GeV gamma-ray sky by Fermi-LAT

Cosmic rays propagate through the Galaxy and interact with photons and gas

Galactic Contribution

First detection of galactic plane neutrino flux thanks to gamma-ray template fit, ~10% of diffuse flux

Galactic Contribution

Extragalactic Sources

110 sources based on gamma-ray properties and weighted with neutrino search sensitivity

Most significant candidate: NGC 1068 (M77), ~80 neutrinos (1-10TeV), 4.2σ

- Nearby (M=14Mpc) Seyfert 2 galaxy
- AGN and star-forming activity

Combining gamma-ray source list with neutrino data allowed neutrino source detection

Source accelerates cosmic-rays to 40-400 TeV

Complete Multi-wavelength data of NGC 1068

IceCube Science 378 (2022)

Neutrinos as Triggers

Public alerts since April 2016

- Single high-energy muon track events (> ~100TeV)
- "Gold" alert stream 10 / yr, ~5 / yr of cosmic origin
- Median latency: 30 sec

Goal: Find electromagnetic counterpart

IC-170922A – a 290 TeV Neutrino

Signalness: 56.5%

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Gamma-ray Counterpart: TXS 0506+056

Gas clouds Dusty torus Broad line region

Blazar

RUB

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Gamma-ray Counterpart: TXS 0506+056

Blazar

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Population of gamma-ray blazars

GeV gamma-ray sky

No signal from population of gamma-ray blazars.

Optical Counterpart to a high-energy neutrino: SN2023uqf

IC-231004A 440 TeV Neutrino 84% signalness 3σ association Distance: 700 Mpc

Optical Counterpart to a high-energy neutrino: SN2023uqf

IC-231004A 440 TeV Neutrino 84% signalness 3σ association Distance: 700 Mpc

Murase MNRAS 440 (2013)

Evidence for hadronic acceleration in core-collapse supernova explosions

Optical Counterpart to a high-energy neutrino: SN2023uqf

IC-231004A 440 TeV Neutrino 84% signalness 3σ association Distance: 700 Mpc

Robert Stein won DPG thesis award in 2023

Status of high-energy Neutrino Astronomy today

Diffuse flux discovered✓Milky Way discovered✓Source candidates✓Source population?2000?</t

New Neutrino Detectors

KM3NeT finds 220 PeV Neutrino with partial Detector

IceCube-Upgrade: Low-energy Extension and Calibration

- First step towards
 IceCube-Gen2 (8 km³)
- 7 new strings in the center of IceCube
- New calibration devices
- Science focus:
 Neutrino properties

New Telescopes

Multiwavelength Instruments

- Increased sensitivity
- Increased wavelength coverage
- Increased cadence

The Multi-Messenger Picture

Stay Tuned!