SPONSORED BY THE

An introduction to gas electron multipliers and their time to shine during the CMS Phase 2 upgrade

Shawn Zaleski on behalf of the CMS Muon System III. Physikalisches Institut A, RWTH Aachen University

April 1, 2025

T20.1 Invited Topical Talks I

S. Zaleski (III. Physikalisches Institut A)

Table of Contents

- Review of Gas Detector Fundamentals
 - Amplification and Detection principles
 - Review of different types of gas detectors
- Introduction to Gas Electron Multiplier (GEM) Technology and Applications
 - Basic principles of GEMs
 - Real world applications of GEMs
- GEM Detectors in CMS
 - The CMS Phase-II Upgrade
 - First stage of GEM detector (GE1/1) operation in CMS
 - Future GEM chambers (ME0) for CMS

2

[2]

Review of Gas Detector Fundamentals

Bethe-Bloch and Minimally Ionizing Particles

- Particles lose energy as they travel through matter
- Example Applications:
 - Particle ID
 - Detector design
 - Radiation therapy
 - Cosmic Ray studies
 - High energy physics
- Depends on charge, mass, velocity of particle and material properties of what the particle is moving through

Gas Detector Principles

Counter Tube Voltage

S. Zaleski (III. Physikalisches Institut A)

voltage)

Gas Counters

- Simplest gas counter is proportional counter
- Anode wire in gas mix surrounded by cathode exterior
- Passing ionizing particles liberate electrons from gas particles
- E-field increases closer to anode
- Anode collects electrons and this signal is sent to readout electronics
- Multiwire proportional counter
 - Nobel Prize for Charpak for first gas-based tracking chamber

Micro Structured Gas Detectors

Gas Electron Multipliers (GEMs)

Micromesh Gaseous Structures (MicroMegas)

S. Zaleski (III. Physikalisches Institut A)

Micro Megas Working Principle

- Thin-gap parallel-plate design
- Thin micro-mesh placed above anode shaping electric field lines
- Electrons created by interaction with ionizing particle drift to mesh and are accelerated in multiplication region
 - High spatial resolution
 - High rate capability
 - Good time resolution
- Currently being installed in the ATLAS
 New Small Wheel

ATLAS

Introduction to Gas Electron Multiplier (GEM) Technology and Applications

S. Zaleski (III. Physikalisches Institut A)

Gas Electron Multiplier (GEM)

- GEM Detection principle similar to proportional counter – replace anode wire with copper mesh of chemically etched holes
- 70 μ m diameter holes spaced 140 μ m hexagonally apart from each other
- Copper-clad Kapton foil (5 μm Cu)
- One voltage applied to one side of the GEM foil, different voltage to the other side O(400 V)
- Potential difference creates large E-field inside GEM foil holes O(60 kV/cm)
- Provides amplification (gain) ~ 20 per GEM foil

100 um

GEM Use Cases

- GEM used in many different applications, for example:
 - Time Projection Chamber example: ALICE
 - Tracking example: KLOE II
 - PREX-II

GEM

S. Zaleski (III. Physikalisches Institut A)

mmm

GEMs in a TPC: ALICE

- Upgrade from traditional MWPCs
- GEM as a readout
- Triple-GEM design
- Improves:
 - 3-d tracking
 - Measures energy loss
 - Higher readout-rate
 - Reduced ion backflow (E-field distortions)

Medical Physics Application: GEMPIX

- Application: Radiation imaging
- Incoming radiation ionizes gas in GEMs which amplify signal
- Pixelated readout (Timepix) gives high spatial resolution readout
- Essentially like a medical x-ray but can use a much wider range of incoming radiation types

[12]

GEM Detectors in CMS

S. Zaleski (III. Physikalisches Institut A)

The CMS Experiment

CMS Muon System

GEMs in CMS Muon System

CMS Muon Endcap Challenges

- Before GEM no redundancy (CMS has large redundancy)
- Improves lever arm from CSC
- Muon endcap $|\eta| > 1.6$
- Need added redundancy endcap; has highest rates but fewest measurement points
 - Difficult due to higher flux of highly energetic particles (radiation hardness)
- Efficiency often less due to tighter cuts
 - Reduce background
 - Improves:
 - Spatial resolution
 - Radiation hardness

S. Zaleski (III. Physikalisches Institut A)

GEM Design for CMS

- 70:30 mix Ar(count):CO₂(quench) flushed through GEM chamber
- Passing particle ionizes gas producing primary electrons in drift region
- 3 layers (triple GEM) GEM foils used to generate O(10⁴) gain per GEM chamber
- Signal collected and read-out at induction plane
- Spatial Resolution O(250 μm)

GE1/1 in CMS

- The GEM project in CMS was started formally in 2009
- Development of GE1/1 went on through 2019 when assembly and installation of first chambers occurred
- Full GE1/1 system installed in Fall 2021
- GEM took first collision data with beginning of Run 3 on 5 July 2022
- Primary Parameters for GEM data:
 - Muon reconstruction efficiency
 - Electronics stability
 - Cluster size

GE 1/1 Chambers

- GEM chamber consists of:
 - Drift board w/ 3 x GEM foils
 - Readout board with 24 x Very Forward ATLAS and TOTEM (VFAT3) chips and optohybrid
 - Cooling circuit
 - Frame and chimney
- 2 x triple GEM chambers (individually layer) form a superchamber (SC)
- The chambers come in long and short versions and alternated in installation
- (Slightly) Overlapping chambers spanning 10.15° → 36 SCs (72 chambers) per endcap and 72 SCs (144 chambers) in entire GE1/1 system

S. Zaleski (III. Physikalische

Prompt Feedback Analysis for Chambers at CMS

[14]

- Check performance of chambers in pp collisions
- The primary quantity that determines if GEMs are operating well is reconstruction (RECO) efficiency (eff)
- Propagate hits from CSC to GE1/1 surface
- N_m = # Matched GEM RECO hits
- N_p = # Propagated hits from CSC to GEM (far left)
- Eff = N_m / N_p
- Consider hits in the GE1/1 acceptance region

GE1/1 Efficiency by Chamber

- Overall good efficiency per chamber
- $\epsilon > 95$ % for most chambers

[15]

GE1/1 2023 Efficiency by Readout Sector

[15]

Challenges for GE1/1 stability at Start of Run 3

- GEM electronics stability a little "rocky" at start of Run 3
- At first difficult to disentangle due to short runs collected by CMS in first months
- Issue with gigabit transceiver (GBT) noticed
- Problems with optical coupling

[16]

Next Project: ME0 Station

- New priority is ME0
- Extends muon acceptance to $\eta \sim 2.8$
- 18 ME0 stacks per endcap,
- Each stack has six triple-GEM layers
- Each ME0 stack spans 20°
- Connected to end of HGCAL
- High radiation and background conditions
 expected

ME0 Stack Production Status

1st completed stack and has undergone test beam studies

ME0 Timing Study Setup And Strategy

- First six layers prototype
- Cosmic rays and testbeam + bkg
- 2 scintillators 30×30, whose coincidence is used as trigger
- Track reconstruction from chamber 0
- Moving the trigger to using a CFD improved the readout

ME0 Timing Beats TDR requirement

- Time resolution < 6 ns for both cosmics and beam + bkg
- Time resolution per BX follows nice exponential fit per layer
- ME0 fullfills time resolution requirement from TDR!!

ME0 Quality Control

S. Zaleski (III. Physikalisches Institut A)

ME0 QC Results

QC3: Gas Tightness

- Overpressure: 25 mbar
- $\Delta p < 7$ mbar per hour ($\tau > 3.04$ h)

QC4: HV Stability

- HV scan 200 3700 V
- Hold each data point 60 s
- D_R < 3 %

S. Zaleski (III. Physikalisches Institut A)

ME0 QC Results

QC5 p1: Effective Gain

- Measure counts and current for single readout sector
- Check gain as function of HV
- Gain > 1.5x10⁴ @ HV = 3500 V

QC5 p2: Gain Uniformity (R. U.)

- Measure for all readout sectors
- R. U. < 15 %

[18]

Summary

- Micro Structure gas detectors are providing improved resolution and tracking
- First GEM chambers performance looks good so far in Run 3 Stable!
- More chambers coming for the new upgrade

S. Zaleski (III. Physikalisches Institut A)

Bibliography I

- [1] Winkler, Alexander & Karadzhinova, Aneliya & Hilden, T. & Garcia, Francisco & Fedi, Giacomo & Devoto, Francesco & Brücken, Erik. (2015). A gaseous proportional counter built from a conventional aluminum beverage can. American Journal of Physics. 83. 10.1119/1.4923022.
- [2] F. Sauli, *GEM: A new concept for electron amplification in gas detectors*, Nuclear Instruments and Methods in Physics Research Section A, 386
- [3] CMS Collaboration, CMS Technical Design Report for the Muon Endcap GEM Upgrade, CERN-LHCC-2015-012
- [4] Benhassi, Marouane. (2021). Research Gate, Interaction particules matière et multi-détecteurs. Accessed 24 March 2025
- [5] https://www.rug.nl/education/courses/other-education/radiation-protection/a-z/a-z-data/detector-gasamplification?lang=en , Accessed 24 March 2025
- [6] Bolotnikov, A.E. & Austin, Robert & Bolozdynya, A. & Richards, John. (2004). Virtual Frisch-grid ionization chambers filled with high-pressure Xe. Proceedings of SPIE The International Society for Optical Engineering. 5540. 10.1117/12.564432.
- [7] https://en.wikipedia.org/wiki/Wire_chamber, Accessed on 24 March 2025

Bibliography II

- [8] Y. Giomataris, Ph. Rebourgeard, J.P. Robert, G. Charpak, MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,376 (1), https://doi.org/10.1016/0168-9002(96)00175-1.
- [9] ALICE Collaboration (W)hole new field: the new GEM Time Projection Chamber of ALICE, J. Phys.: Conf. Ser. 1561 (2020) 012017
- [10] G. Bencivenni et al, *The cylindrical GEM detector of the KLOE-2 experiment,* 2017 JINST 12 C07016
- [11] S. Jian, Update on PRex/CRex GEM detector analysis, Online slides; https://prex.jlab.org/DocDB/0004/000487/001/Prex%20Experiment%20GEM%20analysis%202021 0122%20Hall%20A%20.pdf , Accessed 25 March 2025
- [12] J. Leidne, F. Murtas, and M. Silari, *Medical Applications of the GEMPix*, Appl. Sci. 2021, 11(1), 440
- [13] M. Seidel, Microscopic Simulation of GEM Signals, Bachelor's Thesis, RWTH Aachen University Physics Institute 3A, 201

Bibliography III

- [14] CMS Collaboration, GE1/1 detection efficiencies at 13.6 TeV, CMS DP-2022-004
- [15] CMS Collaboration, GE1/1 performance using 2023 p-p collision data at sqrt(s) = 13.6 TeV CMS DP 2025-003
- [16] CMS Collaboration, Fraction of read-out VFAT3 chips in CMS GE1/1 Muon Chambers in 2022 and 2023, CMS DP-2023-069
- [17] CMS Collaboration, ME0 Timing Resolution, CMS DP-2024-089
- [18] CMS Collaboration, ME0 Quality Control Results from Initial Productions, CMS DP-2024-126
- [19] CMS Collaboration, GEM Performance Results with 2024 Data, CMS DP-2024-073

Thanks for your attention! Any Questions?

• BACKUP SLIDES

Stable 2024 GEM Front-end Read-out Performance

- In 2023 studies of this performed
- On detector electronics optimization helped solve this problem allowing some "recoverability" of chambers
- Since 2023 GEM electronics readout has been stable
- Current stability is ~94%

ME0 Stack Mechanics

- Aachen has manufactured 15 different components for 220 chambers
- Chamber thickness is critical for disk assembly
- Aachen will also contribute to cosmic ray test stand

(QC8 -- top)

S. Zaleski (III. Physikalisches Institut A)

GEMs as Tracking Chamber: KLOE II

- Cylindrical GEM chambers integrate with original Drift chamber
- 4 concentric cylindrical triple GEM detectors
- Higher granularity and improved spatial resolution:
 - Enhanced vertex resolution and tracking precision
 - Higher reconstruction efficiency
 - Coupled with drift chambers yields a more robust tracking system

Physikalisches Institut A)

[10]

GEMs in Astrophysics: PREX-II

- Nuclear physics experiment measuring Pb-208
- Spin polarized electrons impinge on "neutron skin" of Pb nucleus
- Scattering asymmetry related to radius of neutron distribution
- Helpful for understanding physics of neutron stars

[11]

GE1/1 Efficiency by VFAT

- Test chamber shown from Positive end cap (GE11-P-31L2)
- Data collected for 304 pb⁻¹ using high gain with constant fraction discriminator at HV= 3.45 kV
- Granularity is at VFAT level (128 readout strips)
- Efficiency is ~uniform and high across entire chamber

[15]

GE1/1 Residual

- Measure of misalignment
- R(δφ) used due to cylindrical geometry
- Centered on 0 for all parts of detector
- Small spread

Overview of GE1/1 Chamber Efficiency

- Most chambers at/above 95% efficiency
- Overall GE1/1 efficiency ~ 93.4 %
- Skewed by few outlier chambers

S. Zaleski (III. Physikalisches Institut A)

QC5 part 2

- Measure gain response of entire ME0 chamber
- Chambers flush 5 l/hr Ar:CO₂ > 5 hours with HV = 3.125 kV
 - Gain ~ 800
- Measure 5M events ~24 hours
- Response uniformity $(\sigma/\mu) < 15 \%$
- After passing all QC steps ship back to CERN for completion of remaining QC steps

- [18]
- S. Zaleski (III. Physikalisches Institut A)

- QC3: Gas Tightness
- 25 mbar overpressure
- 60 minutes
- $\Delta p < 7 \text{ mbar} (\tau > 3.04)$
- 48 chambers tested (all pass)

- QC4: HV stability
- Change voltage from 200-3000 V in 200 V steps, 3000-5000 V in 100 V steps
- Hold the voltage at each point for 60 s
- Check relative change in resistance of the chamber

ME0 QC5 part 1

- QC5p1: Effective Gain
- Flush chamber with 5 l/hr Ar:CO₂
- HV scan 2.9 3.7 kV in 50 V steps
- Measure number of counts from single readout
- Measure current from same readout
- Calculate Gain
- Gain > 1.5 x 10⁴ @ HV = 3.5 kV

Multiwire Proportional Counters (MWPCs)

- Similar to traditional proportional counter but has multiple anodes
- Each wire connected to its own readout channel
- With additional anodes spatial resolution increases
- Strongest signal (highest collected charge amplitude) is nearest wire

Time Projection Chambers

- Cylindrical gas volume split with electric field in opposite directions (Each half has its own electric field)
- Ends of chamber capped by MWPCs
- Magnetic field applied to reduce electron diffusion
- Anode wires arranged in azimuthal direction for radial sensitivity
- Cathode plane divided into strips in radial dimension to provide azimuthal sensitivity
- Z-coordinate measured from drift time

GE1/1 2024 MIP Efficiency vs HV

- Test chamber shown from Positive end cap (GE11-P-31L2)
- HV scan (3.25 3.50 kV)
- Low, medium, high gain shown
- Constant fraction discriminator used
- Reconstruction efficiency increases as HV and gain increase

[19]

Efficiency Optimized for Gain

- Measurable difference between low & high gains as well as with/without constant fraction discriminator
- Almost all chamber efficiencies improve

GE1/1 2023 Performance Data set

- 17.8 fb⁻¹ data
- Muon data collected by GEM
- 10 GeV < p_T < 100 GeV