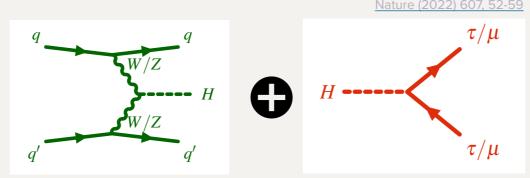


Searches for rare Higgs boson decays Tina Ojeda

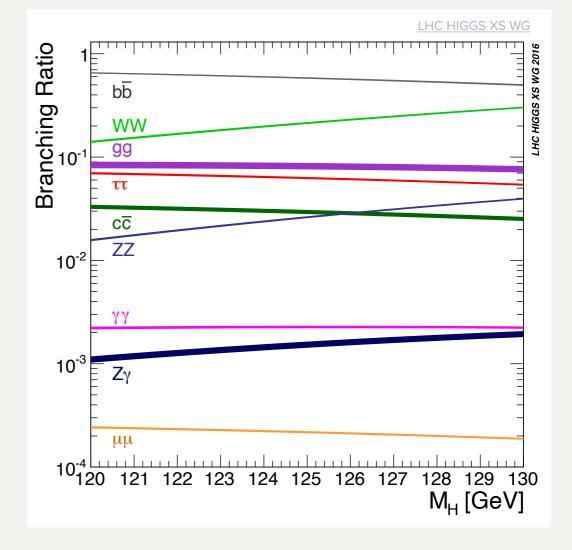
DPG 2025 meeting (Göttingen)
April 1st 2025


- A bit of history
- The SM expands upon a theory developed in the 19th & 20th centuries that described the EM force
 - Issues arose when trying to combine it with the weak force (originally proposed by Fermi in the 1930's to explain beta decay)
 - Massive weak bosons couldn't be accounted for
 - Mechanism (Higgs!) postulated in the 1960's allowed particles to acquire mass
 - EM and weak forces could be explained together in one single EW theory (Nobel 1979)
 - Strong force (explains e.g. why nuclei stay together despite proton's charge repulsion) was added to the mix, resulting in what we now call the SM
- SM predictions: massive weak bosons (W, Z) and Higgs
 - W boson explained beta decay but Z had never been observed!
 - Z boson discovered at CERN's SPS in the 1980's → seemed like SM was "right"
 - Higgs boson discovered in 2012, half a century after it was postulated

- Higgs mechanism allows particles to gain mass without breaking (symmetries of) the theory
 - Strength of Higgs coupling is proportional to particle's mass
 - Strength of Higgs coupling determines how one can produce a Higgs and how the Higgs can decay
- Experimentally, we have access to two main things:
 - How many Higgs bosons were produced (and how) based on characteristics of production mode
 - How those Higgs bosons decayed

- Production and decay rates contain a lot of information about the Higgs boson (and beyond?)
 - Sensitive to couplings
 - Any deviations we find could be signs of BSM!
- Over 30 separate measurements per experiment; rates varying over several orders of magnitude

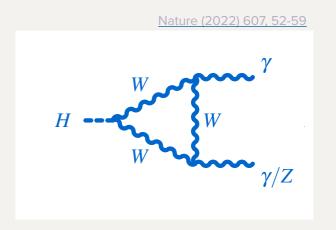
- Higgs mechanism allows particles to gain mass without breaking (symmetries of) the theory
 - Strength of Higgs coupling is proportional to particle's mass
 - Strength of Higgs coupling determines how one can produce a Higgs and how the Higgs can decay
- Experimentally, we have access to two main things:
 - How many Higgs bosons were produced (and how) based on characteristics of production mode
 - How those Higgs bosons decayed

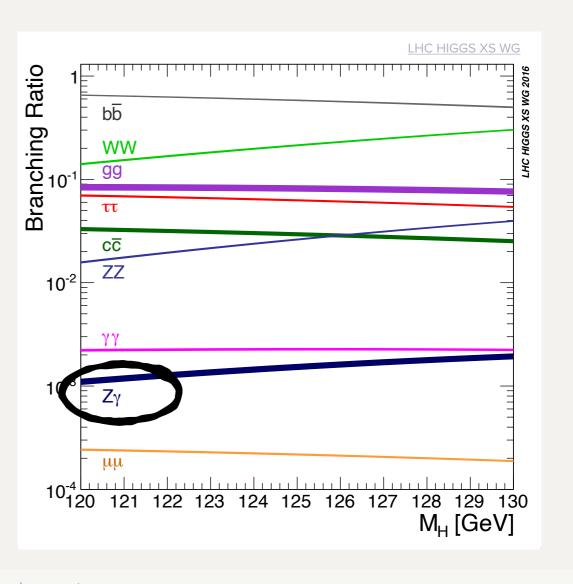

- Production and decay rates contain a lot of information about the Higgs boson (and beyond?)
 - Sensitive to couplings
 - Any deviations we find could be signs of BSM!
- Over 30 separate measurements per experiment; rates varying over several orders of magnitude

- Higgs mechanism allows particles to gain mass without breaking (symmetries of) the theory
 - Strength of Higgs coupling is proportional to particle's mass

Strength of Higgs coupling determines how one can produce a Higgs and how the Higgs can

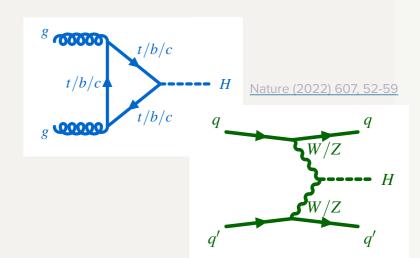
decay


- In general, at hadron colliders you get a lot of hadrons...so processes like $H \to b\bar{b}$ are hard to distinguish from background
- $H \to ZZ^* \to 4\ell$ and $H \to \gamma\gamma$ are the "golden" channels
 - Relatively low rates
 - Fully-reconstructible final states with good energy/momentum resolution
 - Nice backgrounds: low bkg rate (4 ℓ), easy-to-describe ($\gamma\gamma$)
- This is where Higgs measurements start!


Now, after 10+ years and with much more data, we can move to more difficult/rarer decays

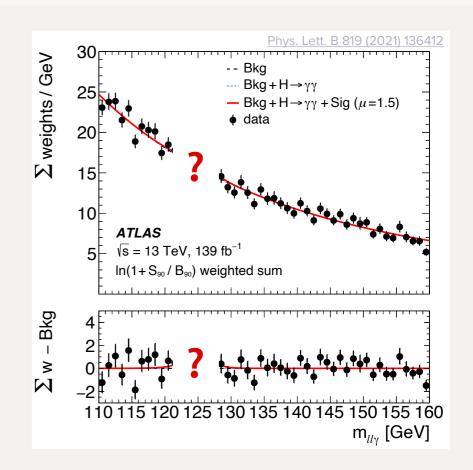
Higgs decays with loops

- Higgs decays with loops are particularly interesting because we only see the objects that "come out" of the loop
 - We don't actually know what is inside the loop (BSM particles?)
 - Can test if the loop contents are consistent with only SM particles, using measured/expected Higgs coupling strengths to SM particles



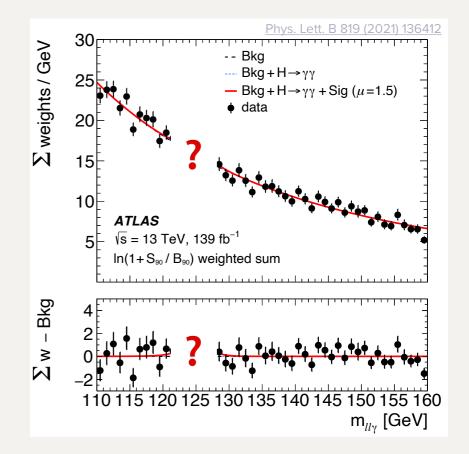
- $H \to Z\gamma$ is similar to $H \to \gamma\gamma$
 - Branching ratio is quite low (10^{-3})
 - Can be enhanced in BSM scenarios (e.g. additional colourless bosons)
 - $H \to Z\gamma \to \ell\ell\gamma$ is quite nice
 - Leptons + photons: good mass resolution
 - Can pick out a nice Higgs boson "bump"
 - Analysis strategy is similar to $H \rightarrow \gamma \gamma$
 - Use lessons learned in $H \rightarrow \gamma \gamma$
 - Share software, tools, techniques, ...

How does the analysis work?


- 1. Select events that are consistent with $H \to Z\gamma \to \ell\ell\gamma$ decays
 - Two light leptons and a photon: not too strict (low stats signal), but not too loose (don't want bkg)
 - Invariant mass near m_H
 - Can ask the invariant mass of the two leptons to be near m_Z (or not, for $H \to \gamma^* \gamma \to \ell \ell \gamma$)
- 2. Select events that target specific Higgs boson production modes
 - Typically allows better signal/background separation by focusing on specific kinematics

- 3. Describe the signal
 - Usually a Double-Sided Crystal Ball (DSCB) function is used
 - Same as for $H \to \gamma \gamma$ analysis
 - Roughly: mean maps to the Higgs boson mass, width maps to the resolution
- 4. Understand the backgrounds
 - Mainly two types: $Z + \gamma$ events (not from a Higgs decay) and $Z + \mathrm{jets}$ where a jet gets misidentified as a photon
 - ullet Neither peaks around m_H

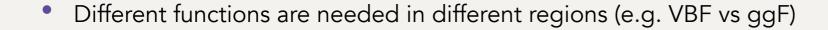
Background estimates


- Background is a smoothly-falling spectrum
 - Shape of this spectrum under Higgs peak very important
 - If we predict this wrong under the Higgs peak, the rate measurement will be off
- Simulated $\ell\ell + \gamma$ events used to estimate "shape" of this contribution
 - ullet This is the largest background, especially at low $m_{\ell\ell}$
 - Very large samples are created to have minimal statistical fluctuations that could distort the shape
 - Typically done using fast simulation

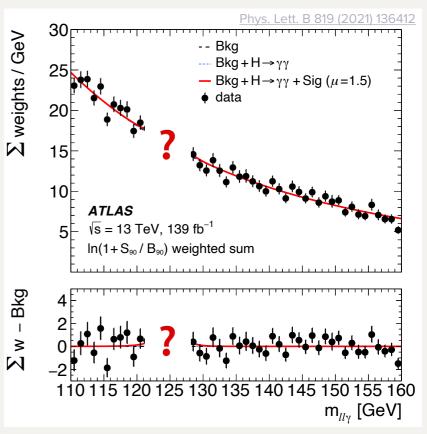
- For events with $m_{\ell\ell} \approx m_{Z'}$, there is an important contribution from $Z+{
 m jets}$
 - Difficult to simulate enough jets that look photon-like (most jets are <u>not</u> photon-like)
 - Solution: take $\ell\ell$ + jets events from data
 - Select events with a jet that is somewhat photon-like (e.g. passes "loose" identification selection)
 - Use this to estimate the shape of $\ell\ell$ + jets events with jets that are more photon-like
 - Ends up being quite similar to $\ell\ell + \gamma$, can just take $\ell\ell + \gamma$ and correct it a bit

Background estimates

- Now that we know what the two shapes look like, we need their relative contributions, especially under the Higgs peak
- Don't do this check in our measurement region
- Instead:
 - Look at events in data where the third object is more/less photon-like and more/less isolated
 - Learn how the fraction changes, so you can predict what the faction will be in the measurement region

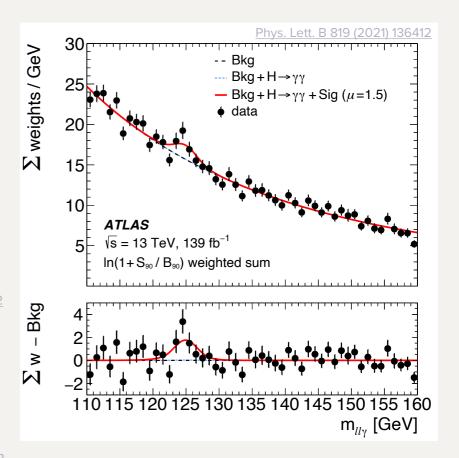

	More isolated	Less isolated	
More photon- like	A	В	_
Less photon-like	С	D	
·			

How does the rate of $\ell\ell + \gamma$ vs $\ell\ell + \mathrm{jets}$ change if you ask the object to be more photon-like?


How does the rate of $\ell\ell + \gamma$ vs $\ell\ell + \mathrm{jets}$ change if you ask the object to be more isolated?

Background estimates

- Not done yet!
- Really need to reduce statistical fluctuations
 - Smoothest thing you can get: a functional form
 - Function options (from $H \to \gamma \gamma$: power law, Bernstein polynomials or exponential of polynomials)
- Fit the $\ell\ell + \gamma$ vs $\ell\ell + \mathrm{jets}$ distribution we created
 - See what function works best
 - Criteria:
 - 1. Describes data in side-band
 - 2. Minimises the possibility of finding a signal where there isn't any (spurious signal, i.e. S+B fit to B-only MC)



Spurious signal is the largest source of systematic uncertainty in this measurement

Results + conclusion

- This kind of analysis was done by ATLAS and CMS
- $H \to \gamma \gamma^*$ and $H \to Z \gamma$ at 3σ "evidence" in Run 2:
 - $H \rightarrow \gamma \gamma^*$:
 - 3.2σ observed (2.1σ expected) in ATLAS Phys. Lett. B 819 (2021) 136412
 - 95% CL of ~4.0 x SM for $H \rightarrow \gamma \gamma^* \rightarrow \mu \mu \gamma$ in CMS $\frac{\text{JHEP 11}}{(2018) \, 152}$
 - $H \rightarrow Z\gamma$:
 - 2.2σ observed (1.2σ expected) in ATLAS $\frac{Phys.\ Lett.\ B\ 809\ (2020)}{135754}$
 - 2.6σ observed (1.2σ expected) in CMS JHEP 05 (2023) 233
 - Combined 3.4σ observed (1.6 σ expected) PRL 132 (2024) 021803

- Results are above SM expectation near m_Z and way from it, and in ATLAS and CMS
 - Not very statistically significant, but interesting
- Stat-limited analyses that greatly benefit from the Run 3 dataset + analysis improvements
 - Stay tuned for Run 3 publications!