

DPG SPRING CONFERENCE 2025 ADVANCES IN SILICON DETECTORS

Matthias Hamer, University of Bonn

- Introduction
- State of the Art
- Future Detectors
 - Low Mass Detectors
 - Silicon Timing Detectors
 - Calorimetry with Silicon Sensors
 - Further R&D and Other Applications

• Introduction

- State of the Art
- Future Detectors
 - Low Mass Detectors
 - Silicon Timing Detectors
 - Calorimetry with Silicon Sensors
 - Further R&D and Other Applications

INTRODUCTION

- requirements for tracking detectors:
 - excellent spatial resolution
 - good signal to noise ratio
 - low X/X_0
 - ...
- silicon detectors can meet all of the requirements
 - micro-structuring
 - no excessive cooling required
 - thin and radiation hard sensors and FE electronics

INTRODUCTION

- silicon detectors in HEP 2 examples
 - NA11/NA32 lifetime of D-mesons

Abstract. We have measured the lifetime of charged and neutral *D* mesons using high resolution silicon strip detectors in the NA11 spectrometer at the CERN SPS. The *D* mesons were produced in 200 GeV π^- -Be interactions. We obtain a value of $\tau_{D^{\pm}} = (10.6^{+3.6}_{-2.4}) \cdot 10^{-13}$ s based on 28, and τ_{D^0} $= (3.7^{+1.0}_{-0.7}) \cdot 10^{-13}$ s based on 26 fully reconstructed decays for the lifetime of the charged and the neutral *D* meson, respectively. For the ratio $\tau_{D^{\pm}}/\tau_{D^0}$ we find 2.8^{+1.1} -0.8.

- silicon detectors in HEP 2 examples
 - NA11/NA32 lifetime of D-mesons
 - Tevatron experiments discovery of the top quark

- Introduction
- State of the Art
- Future Detectors
 - Low Mass Detectors
 - Silicon Timing Detectors
 - Calorimetry with Silicon Sensors
 - Further R&D and Other Applications

- tracking at the HL-LHC ever increasing requirements
 - dense environments in dense events
 - high hit rates and high data rates
 - high overall power consumption
 - low material budget

https://cds.cern.ch/record/2674770

- Introduction
- State of the Art
- Future Detectors
 - Low Mass Detectors
 - Silicon Timing Detectors
 - Calorimetry with Silicon Sensors
 - Further R&D and Other Applications

Particle Physics: Collider Roadmap

- e⁺e⁻ collider for precision physics (Z, H)
- hadron-hadron collider at a later point
- many interesting "smaller accelerator" and "non-accelerator based" experiments along the way

impact parameter resolution

$$\sigma_{d_0} = a \oplus b/(p \cdot \sin^{\frac{3}{2}} \theta)$$

L. Gouskos, FCC Week 2024

CLIC Like Detector at the FCC-ee

- key:
 - good single point resolution (a)
 - low material budget (b)

in time and space!

adding timing to track reconstruction - 4D tracking •

Advances in Silicon Detectors - Matthias Hamer - DPG 2025

 $\sigma_t = 10 \text{ ps} \rightarrow \sigma_x = 3 \text{ mm}$

vertices are distributed

in time and space!

adding timing to track reconstruction - 4D tracking

10.1088/1361-6633/aa94d3

UNIVERSITÄT BONN

CALORIMETRY FOR FCC-EE

- development of detectors for future accelerators
 - roadmap presented for 9 task forces
 - development aligned with collider timeline

CERN-ESU-017

- development of detectors for future accelerators
 - roadmap presented for 9 task forces
 - development aligned with collider timeline

CERN-ESU-017

SILICON DETECTOR R&D IN GERMANY

Si-D Consortium							
WP1: Position-Sensitive Monolithic Detectors Dingfelder, Weber		WP2: Fast Timing Garutti, Galatyuk					
WP 1.1 CMOS tracking detectors Bonn, DESY, TU Dortmund, FH Dortmund, Frankfurt, Freiburg, Heidelberg, KIT, Siegen, Göttingen, GSI, HLL-MPG WP 1.2 CMOS detectors for particle identification and energy measurement HU Berlin, Heidelberg, KIT, DESY		WP 2.1 LGAD sensors Darmstadt, DESY, Frankfurt, Göttingen, Hamburg, KIT, Mainz, GSI, HLL-MPG, MPP-MPG					
		WP 2.2 3D sensors Bonn, DESY, Freiburg, MPP-MPG WP 2.3 CMOS sensors with gain layers Freiburg, Heidelberg					
				WP3	Section System Integration	and Simula	tion
WP 3.1 Power management Aachen, FH Dortmund	WP3.2 Optical data transmission Wuppertal, FH Dortmund, KIT		WP3.3 sion 2.5D/3D integration KIT FH Dortmund, KIT, HLL-MPG				
WP3.4 Al strips on pCVD diamond carrier Frankfurt, GSI, Mainz	WP3.5 Reusability by on-detector intelligence FH Dortmund		WP3.6 ntelligence Radiation hardness and simulatio Frankurt, GSI, Hamburg, Heidelberg, KI				

- Introduction
- State of the Art
- Future Detectors
 - Low Mass Detectors
 - Silicon Timing Detectors
 - Calorimetry with Silicon Sensors
 - Further R&D and Other Applications

- CMOS detectors
 - integrate active sensors and readout on a single die
 - cost efficient, fast turnaround
 - lower material budget

CMOS SENSORS

- cost efficient, fast turnaround
- lower material budget

UNIVERSITÄT BONN

many designs with good performance already exist

10.1016/j.nima.2024.169428

- Example for monolithic active pixel sensors
 - H2M: transfer from hybrid to monolithic
 - small feature size 65 nm process

Digital circuit

DEEP P-WELL

1.25um

P- EPITAXIAL LAYER

P⁺ SUBSTRATE

~10um

~30um

• ultrathin devices possible: 20 μm under study

LOW DOSE N-TYPE IMPLANT

NWELL

COLLECTION

ELECTRODE

35um

C. Lemoine, Pixel 2024

Analog circuit

P-WELL

N-WELL

DEEP P-WELL

S. Ruiz Daza, https://doi.org/10.48550/arXiv.2502.06573 and Pixel 2024

Digital circuit

• all-silicon modules

Wafer with tested CMOS chips for the active part

requires high yield on wafer level

UNIVERSITÄT BONN

Flex cable

700 µm wafer

all-silicon modules

Passive components

Thinned to 400 µm

industry and in-house production possible

ALL SILICON MODULES

Dicing + fabrication of support Gluing and wire-bonding to support All-silicon ladder approach significant reduction in X/X₀ possible depends strongly on the requirements Dicing: 4-chip-ladders and single chips Post-processing of ladder candidates Sensor M. Vogt et al. CMOS Verbund Meeting 2024 ROC Glue Polymer RDL metal (Cu) post-processing Support & Cooling Vias Polymer Services bulk silicon metal pads (Al) Support structure ~1 mm single module material budget contributions illustrative example! Hybrid Module Thinned to ~40 um

- ALICE ITS3
 - bent wafer-scale tracker with all-silicon modules

A. Kluge, VCI2025

bent wafer-scale tracker with all-silicon modules MAPS produced in TPSCo 65nm ۲ A. Kluge, good performance after bending & irradiation VCI2025 10rows) normal operating point 4.9° 447 64 99% efficient 10-4 383 9.7° - 14.6° əlbuə 319 - 255 or 19.5° t - 191 - 24.4° t - 24.4° t - 255 10^{-3} 99.9% efficient (unassociated 99.99% efficient 127 29.2° 63 34.1° 22.4 °C - 39.0° 50 100 150 200 250 300 Threshold (e⁻)

ER1

ALICE ITS3 ۲

UNIVERSITÄT BONN

ALL SILICON MODULES

- cost efficient instrumentation of large areas
 - passive CMOS strip sensors as a first step
 - prototypes produced using stitching •
 - good performance up to $10^{15} n_{eq}/cm^2$
 - no visible impact of stitching

U. Parzefall. Si-D

March 2025

	Low dolle delign 55 µm (20 strips)
1	

Reticle A	Reticle B	Reticle B	Reticle B	Reticle C

- Introduction
- State of the Art
- Future Detectors
 - Low Mass Detectors
 - Silicon Timing Detectors
 - Calorimetry with Silicon Sensors
 - Further R&D and Other Applications

TIMING RESOLUTION

• temporal resolution of a silicon detector, neglecting subleading terms

10.1016/j.nima.2016.05.078

- LGADs for future detectors?
 - increase fill factor for better efficiency

- goal for LGAD developments:
 - increase efficiency
 - maintain/improve spatial resolution
 - maintain/improve temporal resolution

- trench-isolated LGADs
 - etched trenches are filled with SiO₂, Si₃N₄, Polysilicon, ...
 - isolation of pixels \rightarrow better efficiency
 - successfull testbeam at DESY in 2024

LGAD DEVELOPMENTS

trench-isolated LGADs

UNIVERSITÄT BONN

- etched trenches are filled with SiO₂, Si₃N₄,
 Polysilicon, ...
- isolation of pixels → better efficiency
- successfull testbeam at DESY in 2024
- resistive AC coupled silicon sensors
 - continuous gain layer
 - spatial resolution thanks to charge sharing
 - radiation effects on resistive layer under study
 - signal propagation in resistive layer not affected by radiation damage

TIMING WITH 3D SENSORS

• 3D sensors

- temporal resolution competitive with LGADs
- low depletion voltage
- possible issues
 - readout ASIC power
 - production (cost, yield)

R. Koppenhöfer,

Si-D Consortium Workshop March 2025

TIMING WITH 3D SENSORS

• 3D sensors

- temporal resolution competitive with LGADs
- low depletion voltage
- possible issues
 - readout ASIC power
 - production (cost, yield)
- alternative electrode designs being studied
- trench-like electrodes tested up to FCC-hh like fluences
 - good timing resolution up to 10¹⁷ n_{eq}/cm²
 - setup limitations have impacted evaluation of samples at highest fluences

- Introduction
- State of the Art
- Future Detectors
 - Low Mass Detectors
 - Silicon Timing Detectors
 - Calorimetry with Silicon Sensors
 - Further R&D and Other Applications

- use scintillators with silicon photon detectors: SiPM
- p-n junction operated in Geiger regime
- self-sustained avalanche due to strong electric field
 - quenching mechanism required

<u>Phys.Med.Biol.65(2020)17TR01</u>

- CALICE AHCAL prototype and beamtests •
 - 38 layers with 72x72 cm² active area each
 - 3x3 cm² cells, each 3mm thick •
 - steel as absorber (1.7cm)
 - power pulsing capable

K. Emberger, Precision Timing in Highly Granular Calorimeters and Applications in Long Baseline Neutrino and Lepton Collider Experiments

- Introduction
- State of the Art
- Future Detectors
 - Low Mass Detectors
 - Silicon Timing Detectors
 - Calorimetry with Silicon Sensors
 - Further R&D and Other Applications

OTHER EXPERIMENTS AND CHALLENGES

example for high rates: Lohengrin @ ELSA

- dark photon search in a fixed target setup
- 100 MHz single electron tracking
- low energy electrons in final state
- high occupancy in single pixels

telescope like detector

high rate capable CMOS detector with minimal local services

- material sciences: muon spin rotation
 - measurement of material properties
 - HV-MAPS as positron detectors
 - increase in muon rate
 - provide better spatial resolution

https://the10ps-challenge.org/

Annihilation

• TOF-PET

- TOF-PET scanners using SiPMs since 2014
- 210 ps time resolution achievable
- push for 10-30 ps
- attractive candidate: digital SiPMs

<u>J Nucl Med. 2008 March ; 49(3): 462–470</u>

- challenging detector R&D ahead in order to enable the full physics potential of future experiments
- future collider experiments:
 - material budget
 - granularity
 - radiation hardness
 - power management
 - data transmission
- other applications:

. . .

- non-collider experiments
- medical applications

- solutions meeting individual requirements already exist in many cases
- no single solution that meets all requirements for a given experiment yet
- many topics not covered in this presentation:
 - efficient power regulation on modules (DC/DC, Serial Powering)
 - in-silicon optical transceivers
 - CMOS LGADs

. . .