

Exploring the dark universe: The experimental quest for axions & ALPs

Julia K. Vogel DPG Spring Meeting 2025 Göttingen, 31.03.– 04.04.2025

DPG Spring Meeting 2025 Göttingen

- 1. Why Axions?
- 2. Detection of Axions
 - Light-Shining-Through-Wall Searches
 - Helioscopes
 - Haloscopes
 - Other Approaches
- 3. Conclusions

CP = Charge-Parity

CP = Charge-Parity

Strong CP problem

CP violation expected in QCD, but not observed experimentally (θ , nEDM)

The Strong CP Problem

Strong CP problem

CP violation expected in QCD, but not observed experimentally (θ , nEDM)

Peccei-Quinn solution Peccei & Quinn, PRL 38 (1977) 1440.

New global U(1) symmetry, θ turn into a dynamical variable, relaxes to zero

The Strong CP Problem

Theory Strong CP problem

Strong CP problem

CP violation expected in QCD, but not observed experimentally (θ , nEDM)

Peccei-Quinn solution Peccei & Quinn, PRL 38 (1977) 1440. New global U(1) symmetry, θ turn into a dynamical variable, relaxes to zero

Axion Weinberg, PRL 40 (1978) 223; Wilczek, PRL 40 (1978) 279

Pseudo Goldstone-Boson of spontaneous symmetry breaking of PQ at yet unknown scale $\rm f_a$

The Strong CP Problem

Strong CP problem

CP violation expected in QCD, but not observed experimentally (θ , nEDM)

Peccei-Quinn solution Peccei & Quinn, PRL 38 (1977) 1440. New global U(1) symmetry, θ turn into a dynamical variable, relaxes to zero

Axion Weinberg, PRL 40 (1978) 223; Wilczek, PRL 40 (1978) 279

Pseudo Goldstone-Boson of spontaneous symmetry

breaking of PQ at yet unknown scale f_a Properties of this potential DM candidate

- Extremely weakly-coupled fundamental pseudo-scalar
- Generic coupling to two photons
- Mass unknown $m_a \propto g_{a\gamma}$,
- Astrophysics: $g_{ay} < 10^{-10} \text{ GeV}^{-1}$

The Strong CP Problem

Strong CP problem

CP violation expected in QCD, but not observed experimentally (θ , nEDM)

Peccei-Quinn solution Peccei & Quinn, PRL 38 (1977) 1440. New global U(1) symmetry, θ turn into a dynamical variable, relaxes to zero

Axion Weinberg, PRL 40 (1978) 223; Wilczek, PRL 40 (1978) 279

Pseudo Goldstone-Boson of spontaneous symmetry breaking of PQ at yet unknown scale $\rm f_a$

Properties of this potential DM candidate

- Extremely weakly-coupled fundamental pseudo-scalar
- Generic coupling to two photons
- Mass unknown $m_a \propto g_{a\gamma}$,
- Astrophysics: $g_{ay} < 10^{-10} \text{ GeV}^{-1}$
- ightarrow Dark matter candidate & solves strong CP

Solving the strong CP problem: the QCD Axion

- KSVZ: axions couple to BSM quarks only
- DFSZ: axions couple to fermions

A. Berlin et al.

5

Axion-like Particles (ALPs)

Going beyond QCD: Axion-like Particles (ALPs)

 Similar particles are produced in many higher order theories, e.g. string theory

Why Axions?

- DM candidates, but not necessarily solving strong CP problem
- Out of convenience use "axions" to refer to QCD axions and ALPs
- Can often search for axion-like particles (ALPs) in same experiments as axions

2. Detection of Axions

- Light-Shining-Through-Wall Searches
- Helioscopes
- Haloscopes
- Other Approaches
- 3. Conclusions

Source	Experiments	Model & cosmology dependency	Detection Principles for axions and ALPs
Lab axions	Light-Shining- Through-Wall (LSTW) Experiments	Very low	Laser Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet Magnet
Solar axions	Helioscopes	Low	Magnet
Relic axions	Haloscopes	High	Magnet

Large complementarity between different experimental approaches!

2. Detection of Axions

- Light-Shining-Through-Wall Searches
- Helioscopes
- Haloscopes
- Other Approaches
- 3. Conclusions

LIGHT-SHINING-THROUGH-WALL EXPERIMENTS: pure laboratory searches

Concept: Axions mixing with photons in external electromagnetic field

- Conversion probability for a photon with energy w converts into axion after having traversed a distance L_B in magnetic field of strength B:

$$P(\gamma \leftrightarrow a) \simeq 4 \frac{\left(g_{a\gamma}\omega B\right)^2}{m_a^4} \sin^2\left(\frac{m_a^2}{4\omega}L_B\right)$$

LIGHT-SHINING-THROUGH-WALL EXPERIMENTS: pure laboratory searches

Concept: Axions mixing with photons in external electromagnetic field

- Conversion probability for a photon with energy w converts into axion after having traversed a distance L_B in magnetic field of strength B:

$$P(\gamma \leftrightarrow a) \simeq 4 \frac{\left(g_{a\gamma}\omega B\right)^2}{m_a^4} \sin^2\left(\frac{m_a^2}{4\omega}L_B\right)$$

- For small axion masses: $m_a \approx \mathrm{meV}((\omega/\mathrm{eV})(\mathrm{m}/L_B))^{1/2}$:

$$P(\gamma \to a \to \gamma) \simeq \frac{1}{16} \left(g_{a\gamma} B L_B \right)^4$$

LIGHT-SHINING-THROUGH-WALL EXPERIMENTS: pure laboratory searches

Concept: Axions mixing with photons in external electromagnetic field

- Conversion probability for a photon with energy w converts into axion after having traversed a distance L_B in magnetic field of strength B:

$$P(\gamma \leftrightarrow a) \simeq 4 \frac{\left(g_{a\gamma}\omega B\right)^2}{m_a^4} \sin^2\left(\frac{m_a^2}{4\omega}L_B\right)$$

- For small axion masses: $m_a \approx \mathrm{meV}((\omega/\mathrm{eV})(\mathrm{m}/L_B))^{1/2}$:

$$P(\gamma \to a \to \gamma) \simeq \frac{1}{16} \left(g_{a\gamma} B L_B \right)^4$$

LIGHT-SHINING-THROUGH-WALL EXPERIMENTS: pure laboratory searches

- ALPS-II
 - 12 + 12 straightened HERA magnets
 - Optical cavities both at production and regeneration sites
 - Sensitivity 3000×ALPS

ALPS-II@Göttingen2025: T65.1, T89.6

ALPS-II@Göttingen2025: T65.1, T89.6

2. Detection of Axions

- Light-Shining-Through-Wall Searches
- Helioscopes
- Haloscopes
- Other Approaches
- 3. Conclusions

AXION HELIOSCOPES: laboratory axion searches looking for solar axions

Concept: Axions produced in strong electromagnetic fields of the solar core and reconversion into x-ray (keV) photons in transverse laboratory B-field

- Use gas to expand axion mass search range
- Helioscope Figure of Merit $\propto B^2 L^2 A$ (Magnet is key!!)
- To use large-scale magnets in combination with small ultralow-bgrd detectors:
 x-ray optics crucial connecting piece

Detection of Axions II Helioscopes (no DM requirement)

AXION HELIOSCOPES: laboratory axion searches looking for solar axions

B = 9.5 T

L = 9 m

Detection of Axions II Helioscopes (no DM requirement)

• AXION HELIOSCOPES: laboratory axion searches looking for solar axions

Benchmark limits for axion-photon coupling by the CERN Axion Solar Telescope (CAST) with next-gen experiment pathfinder

 $g_{a\gamma} < 0.58 \times 10^{-10} \text{ GeV}^{-1}$ (95%) -CL

dortmund

university

11

 dortmund
 IAXO@Göttingen2025: T26.1, T26.2, T26.3, T26.6, T47.6, T47.7, T65.1

 university
 RADES@Göttingen2025: T89.2

Helioscopes (no DM requirement)

Helioscopes (no DM requirement)

AXION HELIOSCOPES: laboratory axion searches looking for solar axions

Novel Approach using satellites

Concept: Utilize outer solar magnetic field for reconversion of axions into x-ray photons and use X-ray astronomy mission to detect them

Helioscopes (no DM requirement)

AXION HELIOSCOPES: laboratory axion searches looking for solar axions

Novel Approach using satellites

Concept: Utilize outer solar magnetic field for reconversion of axions into x-ray photons and use X-ray astronomy mission to detect them

NuSTAR@Göttingen2025: T89.4

2. Detection of Axions

- Light-Shining-Through-Wall Searches
- Helioscopes
- Haloscopes
- Other Approaches
- 3. Conclusions

► HALOSCOPES: Laboratory searches looking for galactic axions

Concept:

DM axion converts into photon in microwave cavity placed inside magnetic field

- If axion mass matches resonance frequency of cavity

$$m_a = 2\pi\nu_{\rm res} \sim 4\,\mu{\rm eV}\left(\frac{\nu_{\rm res}}{{\rm GHz}}\right)$$

► HALOSCOPES: Laboratory searches looking for galactic axions

Concept:

DM axion converts into photon in microwave cavity placed inside magnetic field

If axion mass matches resonance frequency of cavity

$$m_a = 2\pi\nu_{\rm res} \sim 4\,\mu{\rm eV}\left(\frac{\nu_{\rm res}}{{\rm GHz}}\right)$$

- Need to tune resonance frequency to scan axion mass range
- Figure of merit

$$FOM \propto \frac{B^4 V^2 C^2 Q}{T_{SYS}} \qquad \qquad Q \sim 10^5$$

HALOSCOPES: Laboratory searches looking for galactic axions

MICROWAVE CAVITIES

ADMX

HAYSTAC

RADES@Göttingen2025: T89.2

dortmund university Adapted from <u>https://cajohare.github.io/AxionLimits/</u> (Shoutout to Ciaran O'Hare, the hero of axion plot unification) 17

MICROWAVE CAVITIES

Haysta**c** earrow

Most recent HAYSTAC results

arXiv:2409.08998 (2024), accepted for publication in PRL

v_a [GHz]

7.5

6.0

HALOSCOPES: Laboratory searches looking for galactic axions

10²

1.5

MICROWAVE CAVITIES

Haystac

10.5

P-V

45

QUAX-ay

12.0

50

9.0

Currently active : ADMX, HAYSTAC, CAPP, GrAHal, ORGAN, QUAX, CAST-CAPP, RADES,...

Vacuum Realignment $m_a \sim O(10 \,\mu eV)$ $v \sim O(GHz)$

RADES QUAX-ay RADES GrAHa CAST-CAP TASEH $|g_{\gamma}/g_{\gamma}^{KSVZ}|$ 10¹ PII-ab KSVZ DFSZ P-IIIa P-IIIb P-IV 10^{-1} 10 35 20 25 15 30 40 $|g_{\gamma}/g_{\gamma}^{KSVZ}|$ Ω 17.0 17.5 18.0 18.5 19.0 19.5 23.00 23.25 23.50 23.75 24.00 $m_a [\mu eV]$

4.5

3.0

Most recent HAYSTAC results Future upgrades in preparation

arXiv:2409.08998 (2024), accepted for publication in PRL

 $m_a [\mu eV]$

How to go to higher masses to search for **post-inflation** axions?

tu dortmund university

How to go to higher masses to search for **post-inflation** axions?

Higher frequencies, (i.e. higher m_a) requires smaller cavities and scans get slower!

How to go to higher masses to search for **post-inflation** axions?

Higher frequencies, (i.e. higher m_a) requires smaller cavities and scans get slower!

Dish Antennas & Plasma Haloscopes!

```
m<sub>a</sub> ∽ O(100 μeV)
ν ∽ O(10-100 GHz)
```


https://cajohare.github.io/AxionLimits/

HALOSCOPES: DISH ANTENNAS

Horns et al JCAP04(2013)016

 $P/A \propto B^2$

dortmund

universitv

Concept: Axion induced radiation from a magnetized metal slab

- DM axions interact with a static magnetic field
 - ightarrow producing oscillating parallel E-field.
 - Conducting surface in this field emits plane wave \perp surface with $v \propto m_a$
- Radiated power is low, however, no tuning required!

Horns et al JCAP04(2013)016

dortmund

universitv

Concept: Axion induced radiation from a magnetized metal slab

- DM axions interact with a static magnetic field
 - \rightarrow producing oscillating parallel E-field.

Conducting surface in this field emits plane wave \perp surface with $v \propto m_a$

Radiated power is low, however, no tuning required!

Haloscopes (DM requirement)

HALOSCOPES: DISH ANTENNAS

Enhanced Concept: Boosted dish antenna aka open dielectric resonator

- Stack of dielectric plates as booster inside a magnetic field
- Tuned to the radiofrequencies (m_a around 100 μ eV)
- Can enhance measured power by several 10⁴, but tradeoff bandwidth/"boost factor"

MADMAX@Göttingen2025: T26.4, T26.5, T65.1, T89.1, T89.5

HALOSCOPES: DISH ANTENNAS

MADMAX prototype setup with 3 disks and a mirror within the magnetic dipole field provided by the 1.6 T Morpurgo magnet at CERN (14.5 days of data)

MADMAX@Göttingen2025: T26.4, T26.5, T65.1, T89.1, T89.5

Haloscopes (DM requirement)

HALOSCOPES: PLASMA HALOSCOPES

Concept: Oscillating DM axions induce plasmon excitations in magnetized plasma

- Resonant enhancement when plasma frequency matches axion mass
- Can create plasma with tunable plasma frequency in GHz range using wire metamaterial (wire array with variable interwire spacing)
- Tuning then possible via geometry, limited by losses

Lawson et al., PRL 123 (2019) 141802

HALOSCOPES: PLASMA HALOSCOPES

ALPHA Pathfinder

Concept: Oscillating DM axions induce plasmon excitations in magnetized plasma

- Resonant enhancement when plasma frequency matches axion mass:
- Can create plasma with tunable plasma frequency in GHz range using wire metamaterial (wire array with variable interwire spacing)
- Tuning then possible via geometry, limited by losses
- ALPHA (@Yale & ORNL) Lawson et al., PRL 123 (2019) 141802

Haloscopes (DM requirement)

https://cajohare.github.io/AxionLimits/

Haloscopes (DM requirement)

https://cajohare.github.io/AxionLimits/

How to go to lower masses to search for GUT-scale axions?

Lower frequencies, (i.e. smaller m_a) requires increasingly large cavities

RADES@Göttingen2025: T89.2 https://cajohare.github.io/AxionLimits/

How to go to lower masses to search for GUT-scale axions?

Lower frequencies, (i.e. smaller m_a) requires increasingly large cavities

Lumped Element Detectors!

 $m_a \sim O(neV)$ $v \sim O(kHz-GHz)$

dortmund

universitv

https://cajohare.github.io/AxionLimits/

Haloscopes (DM requirement)

HALOSCOPES: LUMPED-ELEMENT DETECTORS

Pilot experiments: ABRACADABRA ADMX SLIC SHAFT

Next Generation: WISPLC DMRadio

- DMRadio-50L
- DMRadio-m³
 (improvements in Q, V, B)
- DMRadio-GUT
 (ambitious next-next gen)

Overall prospects

https://cajohare.github.io/AxionLimits/

2. Detection of Axions

- Light-Shining-Through-Wall Searches
- Helioscopes
- Haloscopes
- Other Approaches
- 3. Conclusions

Axions experiment using intense lasers (LUXE) or beam dump (SHiP)

LUXE@DESY

SHiP@Göttingen2025: T23.3

Conclusions

- Axions can solve strong CP & are simultaneously good DM candidates
- Axions/ALPs can be searched for in a variety of laboratory experiments: Haloscopes, Helioscopes, LSTW experiments,...
- Complementary searches are essential to cover all viable parameter space
- But wait, there is more:
 - More experiments
 - More couplings
 - More physics:
 - DP, scalars,...

Conclusions

- Axions can solve strong CP & are simultaneously good DM candidates
- Axions/ALPs can be searched for in a variety of laboratory experiments: Haloscopes, Helioscopes, LSTW experiments,...
- Complementary searches are essential to cover all viable parameter space
- But wait, there is more:
 - More experiments
 - More couplings
 - More physics:
 - DP, scalars,...

The (axion) future is bright!

Backup

Why is the electric dipole moment of the neutron (nEDM) so small?

QCD Lagragian contains a CP violating term (with q-parameter of QCD vacuum)

$$\mathcal{L}_{CP} = \overline{\theta} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a$$

Observational Consequences: Prediction of electric dipole moments (EDM) to hadrons, most importantly, to neutrons
Crewther, Di Vecchia, Veneziano, Witten

$$d_n \sim 10^{-16} \ \bar{\theta} \ e \,\mathrm{cm}$$

 $|d_n| < 1.8 \times 10^{-26} \, e \, \mathrm{cm}$

Crewther, Di Vecchia, Veneziano, Witten 1979; Pospelov, Ritz 2000

Latest measurements of the nEDM

Abel et al. 2020

• Therefore expect
$$|\overline{\theta}| \lesssim 10^{-10}$$

STRONG CP PROBLEM or WHY IS THETA SO SMALL?

Solving the strong CP problem: the QCD Axion

- KSVZ: axions couple to BSM quarks only
- DFSZ: axions couple to fermions
- Additionally, more recent models, e.g. Sokolov & Ringwald, JHEP 2021, 123 (2021)

The Axion

Coupling of axions to photons exploited by many experiments

- Relatively "simple" and generic for all axion models
- Model-dependencies, however, exist

Traditional benchmark models

- KSVZ: axions couple to BSM quarks only
- ► **DFSZ**: axions couple to fermions

Axions

Coupling of axions to photons exploited by many experiments

- Relatively "simple" and generic for all axion models
- Model-dependencies exist however

2 photon	proton	neutron	electron
$\frac{\alpha C_{a\gamma}}{2\pi} \frac{a}{f_a} \frac{F_{\mu\nu} \widetilde{F}^{\mu\nu}}{4} - $	$-C_{ap}m_prac{a}{f_a}[i\bar{p}\gamma_5 p] -$	$-C_{an}m_nrac{a}{f_a}[i\bar{n}\gamma_5 n]$ -	$-C_{ae}m_erac{a}{f_a}[i\bar{e}\gamma_5 e]$ -
? ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
$g_{a\gamma} = \frac{C_{a\gamma}\alpha}{2\pi f_a}$	$g_{ap} = C_{ap} \frac{m_p}{f_a}$	$g_{ap} = C_{an} \frac{m_n}{f_a}$	$g_{ap} = C_{ae} \frac{m_e}{f_a}$
$\mathcal{L}_{a'}$	$_{\gamma} = -\frac{1}{4}g_{a\gamma}F_{\mu\nu}\tilde{F}^{\mu\nu}$	$a = g_{a\gamma} \vec{E} \cdot \vec{B} a,$	

Helioscopes (no DM requirement)

NuSTAR@Göttingen2025: T89.4

HALOSCOPES: DISH ANTENNAS

Horns *et al* JCAP04(2013)016 F. Bajjali et al., JCAP 08 (2023), 077

 $P/A \propto B^2$

BRASS@ U. Hamburg

- Consists of plane permanently magnetized conversion panel $B = 0.8 \,\mathrm{T}$
 - $\mathcal{A} = 4.7 \,\mathrm{m}^2$
- Spherical reflector

Concept: Axion induced radiation from a magnetized metal slab

- DM axions interact with a static magnetic field
 - \rightarrow producing oscillating parallel E-field.

Conducting surface in this field emits plane wave \perp surface with $v \propto m_a$

- Radiated power is low, however, no tuning required!
- BRASS@ U. Hamburg

► HALOSCOPES: DISH ANTENNAS

Horns *et al* JCAP04(2013)016 Liu et al., PRL 128 (2022) 131801

 $P/A \propto B^2$

BREAD@ Fermilab

Cylindric parabolic
 conversion panel allows use
 of solenoidal magnetic field

 $B\sim 10\,{\rm T}$

 $\mathcal{A} \sim 10 \, \mathrm{m}^2$

Concept: Axion induced radiation from a magnetized metal slab

- DM axions interact with a static magnetic field

 \rightarrow producing oscillating parallel E-field.

Conducting surface in this field emits plane wave \perp surface with $v \propto m_a$

- Radiated power is low, however, no tuning required!
- BRASS@ U. Hamburg, BREAD@ Fermilab

HALOSCOPES: DISH ANTENNAS

Hoshino et al., arXiv 2501.17119

Concept: Axion induced radiation from a magnetized metal slab

- DM axions interact with a static magnetic field
 - \rightarrow producing oscillating parallel E-field.

Conducting surface in this field emits plane wave \perp surface with $v \propto m_a$

- Radiated power is low, however, no tuning required!
- BRASS@ U. Hamburg, BREAD@ Fermilab

► HALOSCOPES: LUMPED-ELEMENT DETECTORS

Concept: Axion generates oscillating effective current J_{eff} parallel to B_0 in toroidal or solenoidal magnet

- J_{eff} in turn generates oscillating magnetic flux B_a (azimuthal)
- Can use pickup structure to read this

dortmund

universitv

Couple LC resonator inductively and use SQUID readout scheme

Other couplings

Other couplings

Other couplings

Other couplings

Full panorama

