

Highlights from Standard Model physics at the LHC in the precision era

DPG Spring Meeting | 3 April 2025 | Göttingen, Germany

Daniel Savoiu for the ATLAS and CMS collaborations

The LHC in the precision era & the road ahead

Tevatron: √s = 1.96 TeV

High-Luminosity LHC

The LHC in the precision era & the road ahead

Tevatron: $\sqrt{s} = 1.96 \text{ TeV}$

High-Luminosity LHC

How do we get there?

improved theoretical understanding

high energy: perturbative theory predictions
+ low energy: modeling of nonperturbative effects

¹2410.22148 JHEP **12 (2024) 156**

new technologies and improved approaches

better **detectors**, reconstruction, **calibration** & **analysis** methods

Outline

E. Schopf, Wed 11:30 (T 42.2) M. Komm, Fri 12:00 (T 105.3)

Jets & Quantum Chromodynamics (QCD)

- Jet cross sections & other observables
- Parton distributions & strong coupling
- Jet substructure

+ Searches for new physics with **jets**

Electroweak measurements

- Vector boson production
- Lepton properties & electroweak SM parameters + Searches for new physics

with leptons & bosons

DPG Spring Meeting | 3 April 2025 | Göttingen, Germany

Disclaimer #1 not covering Higgs boson or top quark, see dedicated talks

cannot cover everything, presenting personal

selection of results

Disclaimer #2

Disclaimer #3 both ATLAS and CMS have similar results on many topics, will sometimes show only one or the other

Jets & Quantum Chromodynamics (QCD)

Why study jets at the LHC?

jet = collimated stream of particles, experimental signature of color-charged particles (quarks, gluons)

Why study jets at the LHC?

jet = collimated stream of particles, experimental signature of color-charged particles (quarks, gluons)

DPG Spring Meeting | 3 April 2025 | Göttingen, Germany

Why study jets at the LHC?

jet = collimated stream of particles, experimental signature of color-charged particles (quarks, gluons)

Jet production – inclusive jet cross sections

highly precise differential measurements covering a large phase space

Jet production – constraints on PDFs & strong coupling

data provide precise constraints on fundamental theory components

Submitted to *Nature* 2309.12986

Strong coupling $- \alpha_s(m_z)$ from Z boson p_T

precise $\alpha_s(m_z)$ determination from recoil of Z boson against radiation from initial-state partons

D. Savoiu

DPG Spring Meeting | 3 April 2025 | Göttingen, Germany

Paired dijet production

probing new physics at the highest reachable energies

PRD 108 (2023) 112005 2307.14944

four-jet invariant mass $m_{4j} = 6.6 \text{ TeV}$

average mass of dijets with largest invariant mass $\langle m_{2i} \rangle = 2.2 \text{ TeV}$

Run: 336678 Event: 1202524014 2017-09-26 18:00:56 CEST

Paired dijet production

probing new physics at the highest reachable energies

iet

iet

iet

jet

PRD **108 (2023) 112005** 2307 .<u>14944</u>

new heavy resonance Y decaying to 4 jets via intermediate state X

р

Run: 336678 Event: 1202524014 2017-09-26 18:00:56 CEST

17

Jet substructure – looking inside jets with the Lund jet plane

2D representation of the phase space of emissions inside jets

Electroweak measurements

Why measure electroweak processes?

DPG Spring Meeting | 3 April 2025 | Göttingen, Germany

1.5

2.5

3.5

lvl

Batio 10.95

0.5

Z boson production – differential cross sections

novel method for measurement in full phase space of decay leptons

D. Savoiu

dơ/dp_T [pb/GeV]

10

10-2

10⁻³

 10^{-4}

10⁻⁵

 10^{-6}

 10^{-7}

10⁻⁸

10

10⁻¹⁰

 10^{-1}

TLAS

 $pp \rightarrow Z$

 $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$

10

W boson production – calibration of hadronic recoil

essential for measuring W boson properties

EPJC 84 (2024) 1126 2404.06204

W boson mass

Submitted to Nature 2412.13872

fundamental SM parameter, new high-precision measurement from CMS

highly granular multidimensional fit of muon kinematics incorporating all statistical & systematic effects

W boson mass

fundamental SM parameter, new high-precision measurement from CMS

nent from CMS	Source of uncertainty	Impact (MeV
		in $m_{\rm W}$
	Muon momentum scale	4.8
	Muon reco. efficiency	3.0
ighly controlled systematic uncertainties nanks to improved nalysis techniques	W and Z angular coeffs.	3.3
	Higher-order EW	2.0
	$p_{\rm T}^{\rm V}$ modeling	2.0
	PDF	4.4
	Nonprompt-muon backgrou	nd 3.2
	Integrated luminosity	0.1
	MC sample size	1.5
	Data sample size	2.4
	Total uncertainty	9.9

- custom muon reconstruction with improved track fitting, detector simulation & magnetic field modeling
- data-driven estimation of **backgrounds**
- simulation corrected for higher-order effects, including all-order resummation relevant at low p_T

Drell–Yan FB asymmetry & weak mixing angle

key parameter of the SM, relates vector and axial-vector Z boson couplings to fermions

DPG Spring Meeting | 3 April 2025 | Göttingen, Germany

 $m_{\rm W}^2$

 m_{7}^{2}

 $\sin^2 \vartheta_{\rm W} = 1$ -

Lepton universality in *W* decays

[dd] (vi→W'→lv) [bb] 10______ **Resonances** – searches with leptons ATLAS Expected limit √s = 13 TeV, 139 fb⁻¹ $W' \rightarrow Iv$ Expected $\pm 1\sigma$ high sensitivity thanks to clean final states and low background 95% CL Expected $\pm 2\sigma$ Observed limit BSM resonances appear as bumps on - SSM 10-2 on dilepton / transverse mass spectra 10-8 \rightarrow ev selection VV (DIEV) $10^{6}_{10^{8}}$ Multiiet W Events — W' (3 TeV) — W' (4 TeV) — W' (5 TeV) — W' (6 TeV) ■ Ďáťa ATLAS 105 \mathcal{V}_{ℓ} 10-**∏ Q**iboson √s = 13 TeV, 139 fb⁻¹ Top quark 186 \rightarrow ev selection 5 Multijet m(W') [TeV] **Z**/γ* Diboson 35.9 fb⁻¹ (13 TeV. ee) a $[\sigma \cdot B] Z' / [\sigma \cdot B] Z$ Obs. 95% CL limit 10-4 10 10³ CMS ----- Exp. 95% CL limit, median 102 width 10⁻ 10 -0.6% -3% -10% -5% Data / Bkg 1.2 10 ····· Z'_{SSM} (width 2.97%) Z'w (width 0.53%) 10 upper limits on 0.6 10-7 Data / Bkg (post-fit) 9.0 9.0 cross section HEP **06** (018)120 set for several models 10^{-8} 5000 1000 2000 3000 4000 200 300 1000 2000 M [GeV] Transverse mass [GeV]

DPG Spring Meeting | 3 April 2025 | Göttingen, Germany

200 300 1000

2000

28

Diboson production

sensitive probe of SM gauge structure

DPG Spring Meeting | 3 April 2025 | Göttingen, Germany

CMS-PAS-SMP-24-013

CMS *Preliminary*

± 1 SD (syst)

3.5

3

138 fb⁻¹ (13 TeV)

Tot. Stat. Syst.

± 1 SD (stat⊕syst)

Same-sign WW production – first evidence for longitudinally polarized W_{L}

vector boson scattering as a probe of electroweak symmetry breaking

Probing new physics – going beyond the SM with *Effective Field Theory*

parameterize contributions from new phenomena via additional terms in Lagrangian

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} O_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

potential energy scale for new physics ($\Lambda \approx 1 \text{ TeV}$)

 constraints on various Wilson coefficients from fit to data from multiple processes

WW, WZ, $Z \rightarrow \ell \ell$

no deviation from SM observed Wilson coefficients compatible with zero

LHC as a photon collider

high-energy photons radiating from protons as a precise probe of Quantum Electrodynamics (QED)

pure QED production of tau lepton pairs observed for the first time in proton-proton collisions

accurate modeling of track multiplicity enhances sensitivity to γγ→ττ process

- ATLAS & CMS have an extensive and varied program of Standard Model measurements, demonstrating the unprecedented level of experimental precision reachable at the LHC
- QCD & electroweak measurements are crucial for refining our understanding of the Standard Model, and provide a constraining baseline in the search for new phenomena
- much of the improvement is due to a deeper understanding of systematic effects, an improved theoretical modeling and more sophisticated analysis techniques

many more results that I could not cover here check out the experiment result pages for more

