Searching for New Physics in Soft Unclustered Energy Patterns at the LHC

DPG Frühjahrstagung 2025 - Göttingen

Alexander Lory LMU Munich, AG Biebel

Soft Unclustered Energy Patterns (SUEPs)

- High particle multiplicity (100 10'000)
- Soft particles (few GeV or below)
- Spherically distributed \rightarrow In contrast to SM QCD

A sign for a strongly coupled, quasi-conformal Hidden Valley (HV)

Alexander Lory

Portal interaction:

- Any allowed interaction connecting the sectors
- Examples:
 - Into the HV: exotic Higgs decay

Portal interaction:

- Any allowed interaction connecting the otherwise uncharged sectors
- Examples:
 - Into the HV: exotic Higgs decay
 - Back to the SM: kinetic mixing of photon dark photon

Strongly coupled hidden valley:

- New interaction is a QCD-like, strong interaction
- Dark quarks form **bound states** (dark mesons, baryons, ...)
- At LHC: *dark showers* ("hidden" showers)

Phys. Rev. Lett. 133, 191902

Strongly coupled Hidden sectors as Dark Matter (DM)

- Good DM candidate:
 - Stable dark hadrons

•••

- No interaction with the SM
- Sizeable self interaction
 - "Cusp-core problem"

Adapted from: Rocha et al. (2013), MNRAS, 430, 81-104

- DM relic density:
 - matter antimatter asymmetry shared between DM and baryonic matter
 - Asymmetric Dark Matter Phys. Rev. D 79, 115016 (2009)
 - → portal interaction allows sharing the asymmetry
 - $\sim 5 \text{ GeV DM}$

Galaxy halos - *cusp-core problem*

Adapted from: Rocha et al. (2013), MNRAS, 430, 81–104

"Cuspy" core (not observed) Washed out core (what we observe)

Strongly coupled Hidden sectors as Dark Matter (DM)

- Good DM candidate:
 - Stable dark hadrons

•••

- No interaction with the SM
- Sizeable self interaction
 - "Cusp-core problem"

Adapted from: Rocha et al. (2013), MNRAS, 430, 81-104

- DM relic density:
 - matter antimatter asymmetry shared between DM and baryonic matter
 - Asymmetric Dark Matter Phys. Rev. D 79, 115016 (2009)
 - → portal interaction allows sharing the asymmetry
 - $\sim 5 \text{ GeV DM}$

What to expect from a dark shower at the LHC (1/2)

The strong coupling dictates the shape of the shower

- Coupling similar to SM QCD?
 - \rightarrow shower with enhanced emission of soft and collinear partons
 - \rightarrow jet formation

Adapted from Phys. Rev. Lett. 133, 191902

Searches for dark showers **with jet formation** (examples)

- Searches for heavy dijet resonances ATLAS: J. High Energ. Phys. 2020, 145 (2020)
 CMS: J. High Energ. Phys. 2023, 161 (2023)
- Search for dark quarks ("unusual" jets) ATLAS: J. High Energ. Phys. 2024, 128 (2024)
- Displaced decays of dark hadrons: *Emerging jets* CMS: J. High Energ. Phys. 2024, 142
- Containing some stable dark hadrons: Semi-visible jets ATLAS: Phys. Lett. B 848 (2024) 138324 CMS: J. High Energ. Phys. 2022, 156 (2022)

J. High Energ. Phys. 2024, 128 (2024)

Emerging jets adapted from: J. High Energ. Phys. 2015, 59 (2015)

Semi-visible jets

No sign of new physics in the dark shower searches so far

So what if the dark shower doesn't produce jets?

What to expect from a dark shower at the LHC (2/2)

- QCD: no jet formation below ~ 10 GeV
- Using anti-de-Sitter/conformal field theory correspondence:
 - Spherically symmetric distributions are expected for collisions in the non-perturbative region
 J. High Energ. Phys. 2008, 012 (2008)

What to expect from a dark shower at the LHC (2/2)

- QCD: no jet formation below ~ 10 GeV
- Using anti-de-Sitter/conformal field theory correspondence:
 - Spherically symmetric distributions are expected for collisions in the non-perturbative region
 J. High Energ. Phys. 2008, 012 (2008)

SUEP: Extended the non-perturbative regime towards high energies
→ slow running of the coupling (quasi-conformal)

A SUEP is a plausible manifestation of a dark shower inspired by the non-perturbative regime of QCD

SUEP simulation https://gitlab.com/simonknapen/suep_generator

• Non-perturbative → Statistical model: Maxwell-Boltzmann

→ Instead of simulating vertices, draw random values

• For simplicity let's fix m = T (approx. true in SM QCD)

 $ightarrow T \sim p_T$ (for unboosted events)

- Parameter space: T = [0.1:10] GeV
 - Below 0.1 GeV: Not many possible decays to the SM
 - Above 10 GeV: not "SUEPy": lower multiplicities, higher momenta (other searches are sensitive)

ATLAS and CMS: general purpose detectors at the LHC

- Explore the **TeV scale** in p p collisions
 - Test the Standard Model (SM) at extreme energies
 - Search for new **high mass** particles (supersymmetry, dark matter, ...)
- Structure:
 - **Inner Detector (ID)**: Tracks charged particles and reconstructs vertices
 - Calorimeters: Measure energies of electrons, photons, and hadrons
 - **Muon system**: tracks muons
- Optimized to reconstruct **high-momentum** particles
 - Strong magnetic fields enable precise momentum measurements

ATLAS ATLAS-PHOTO-2021-029

Experimental challenges

Reconstructing SUEP constituents:

- Final state particle nature set by portal back to SM
 - \rightarrow Can be hadrons, leptons, a mix, ...
- Challenge:
 - Large magnetic fields limit reconstruction of low transverse momentum

Muons are only present in a subset of scenarios

 \rightarrow For an inclusive search ID tracks will be our first choice for the reconstruction of SUEP constituents

LHC

hidden

valley

arXiv:0801.0629

Trigger system (ATLAS)

- Record 3 MB every 25 ns
 → real-time event selection
- Level-1: very fast
 → only calorimeters and muon system
- **HLT**: more time available
 - → includes tracking, but limited to regions of interest or subset of events

Strategies:

- 1) H_T trigger (sum of calorimeter measurements \ge 1 TeV)
 - very heavy mediators or recoils against energetic QCD jet
- 2) For exotic Higgs decays: associated production
 - Efficient triggers, but lower cross-section
- 3) Multi-muon triggers
- 4) Pixel cluster-based

• <u>1) H_T-based search (CMS)</u>

Phys. Rev. Lett. 133, 191902

- Trigger: $H_T > 1200 \text{ GeV}$
- Requires strong ISR jet
- Compute the **sphericity** in the SUEP frame
- Event selection:
 - high sphericity
 - high ID track multiplicity matched to the SUEP
- Data-driven background estimate
- Binned likelihood fit on number of tracks

Adapted from Phys. Rev. Lett. 133, 191902

<u>1) H_T-based search results</u>

- No sign of new physics
- Good limits for heavy mediators
- limited by trigger for lower mediator masses

2) Exotic Higgs decays with associated production (CMS)

No sign of new physics

- \rightarrow limits down to BR $\approx 0.2\%$ for T $\approx 0.5~GeV$
- \rightarrow weaker limits for higher T

3) Muon-based search

- Targets only signals containing muons
 - Realistic scenario: kinetic mixing with a dark photon
- Multi muon triggers
 (e.g. 4 muons @ 4 GeV)
- Event selection:
 - High muon multiplicity
 - High track multiplicity
 - High sphericity
- Muons are rare in the SM
- Almost background free searches possible
 - \rightarrow limits in the fb range in Run 2
 - \rightarrow probing the Higgs portal at branching ratios < 1%

O(0.1) fraction of muons

4) Pixel clusters

- Very high multiplicities! (> 10 k)
- Tracks can point to a vertex, pixel clusters can't
- But size along beam direction correlates strongly with angle of incidence
 - Luminosity measurement using pixel cluster counts in ATLAS Nuclear Inst. and Methods in Physics Research, A 924 (2019) 275–278
- Size = 3 clusters:

4) Pixel clusters

- Very high multiplicities! (10'000 100'000)
- Tracks can point to a vertex, pixel clusters can't
- But size along beam direction correlates strongly with angle of incidence
 - Luminosity measurement using pixel cluster counts in ATLAS Nuclear Inst. and Methods in Physics Research, A 924 (2019) 275–278
- Efficient reconstruction at low T

	ID tracks	pixel clusters
m = T = 1 GeV	52%	62%
$m=T=0.25~{ m GeV}$	7.2%	62%
m = T = 0.1 GeV	1.2%	66%

Efficiency: $\frac{\text{object multiplicity}}{\text{total charged particles}}$

4) Trigger strategy?

- Level-1 for T < 0.5 GeV:
 - Many particles never reach the calorimeters
 - Small ISR jet \rightarrow imbalance \rightarrow missing transverse energy
 - Also for semi-visible SUEPs

<i>M</i> (GeV)	m = T (GeV)	HLT_xe70_mht_L1XE50	HLT_xe110_mht_L1XE55	HLT_xe110_pufit_L1XE55	Total
125	0.1	16.2	11.6	10.2	16.2
125	0.25	8.2	2.2	1.8	8.2
125	1	2.4	0.8	0.5	2.4

 $E_{\rm T}^{\rm miss}$ trigger efficiencies [%]

• HLT: Belt of fire in the innermost pixel layer:

J. High Energ. Phys. 2017, 76 (2017)

Summary & Outlook

- QCD-like hidden sector: excellent DM candidate
- At the LHC: dark showers
- SUEP: subclass of dark showers
- T > 0.5 GeV
 - H_T trigger for high mediator masses (result available)
 - Associated production for exotic Higgs decays (result available)
 - **Muon-based** (no result yet)
- T < 0.5 GeV:
 - **Pixel cluster counting**, both for HLT and offline
 - Missing transverse energy at level-1, especially for semi-visible SUEPs
- ML algorithms, especially for SUEPs that deviate from the ideal spherical picture Unsupervised Hadronic SUEP at the LHC. J. High Energ. Phys. 2021, 129 (2021) Autoencoders for real-time SUEP detection Eur. Phys. J. Plus 139, 281 (2024)
- High luminosity LHC: more pile-up collisions

Thank you!

In the inner detector of an LHC experiment

Particles cluster into jets

Soft Unclustered Energy Pattern (SUEP)

A soft, isotropic spray of particles

- Sphericity distribution in ee→ hadrons (SLAC-LBL @ SPEAR storage ring)
 - S = 0: pencil-like event shape
 - S = 1: maximally isotropic distribution
- Above 6.2 GeV: jet model
- 3.0 GeV : isotropic phase space model

- Prompt decays to the SM:
 - Dijet resonance
 - Jet substructure

