First detection of neutrinos in water-based liquid scintillator at ANNIE

DPG Frühjahrstagung Göttingen 3. April 2025 Johann Martyn

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

ANNIE is an international collaboration of 45+ collaborators from 17 institutions in 6 countries.

ANNIE

01/20

- The Accelerator Neutrino Neutron Interaction Experiment
- Located at the Fermilab, 100 m downstream of the Booster Neutrino Beam (BNB)
- 26 ton Gadolinium loaded Water Cherenkov detector
- ~120 PhotoMultiplier tubes (PMTs) and some Large Area Picosecond Photodetectors (LAPPDs)

Main goals:

- Measurement of neutrino cross section
- Measurement of neutron multiplicity from neutrino nucleus interactions in water
- Demonstration and investigation of new detector technologies:
 - Gadolinium doped water for neutron detection
 - LAPPDs
 - Water based Liquid Scintillator (WbLS)

Fermilab Accelerator Complex

- Accellerator provides E_{kin}=8GeV protons to BNB
- 84 bunches (2 ns) of protons in a beam spill of $\Delta t = 1.6 \,\mu s$
- Muon neutrinos ~ 93%, muon anti-neutrinos ~ 6%, electron (anti) neutrinos <1%
- Mean neutrino energy ~800 MeV

02/20

ANNIE: Measurement of neutrino cross section

• ANNIE shares the BNB with several LAr experiments => Comparison of oxygen & argon cross sections

03 / 20

• ANNIE is near the target of a neutrino beam => High statistics: $O(10^4)$ neutrino events per year

• Neutral current quasi-elastic interactions (vNCQE) on oxygen is dominant background for Diffuse Supernova Neutrino Background (DSNB)

- Neutrino experiments: want precise measurement of the neutrino energies
- After neutrino-nucleon interaction hadronic component may undergo further interactions
- Outgoing neutrons can carry away energy if they are not detected
- Precise knowledge of neutron multiplicity reduces energy reconstruction uncertainty
- Simulating nuclear effects is hard
 models show significant variations

04 / 20

ANNIE Detector

- Front Muon Veto (FMV): 26 scintillator paddles to reject upstream dirt muons
- Water Tank:
 - ~3 m x 4 m volume filled with 26 t water with 0.2% $Gd_2(SO_4)_3$
- => Neutron capture on H: 2.2 MeV Neutron capture on Gd: ~8 MeV
- Photosensors:
 - ~120 PMTs, up to 5 LAPPDs for light collection and event reco.
- Electronics rack: Data acquisition (DAQ) system
- Muon Range Detector (MRD) 310 scintillator paddles Used for muon reco.

LAPPDs: Large Area Picosecond Photodetectors

- LAPPDs: photosensors using micro channel plates
- Large detectin area: 20 cm x 20 cm
- Timing resolution < 100 ps, \sim 1 cm spatial resolution
- Inclusion of LAPPDs will improve vertex reco for ANNIE from ~30cm to < 10 cm with 5 LAPPDs
- ANNIE: first to detect beam neutrinos using LAPPDs!

06 / 20

- Water Cherenkov detectors are great for detecting leptons but no signal for low energy hadrons
- Cherenkov directionality and ring counting allows for powerful discrimination of event topologies
- Scintillation has no energy threshold
 => detection of sub-Cherenkov particles
- Hybrid event detection: Combine Cherenkov and scintillation signals

Super-Kamiokande

08/20

- Hybrid event detection: Combine Cherenkov and scintillation signals
- Better particle identification and discrimination of event topologies
- Improved energy reconstruction through higher light yield and through detection of missing hadrons
- Improved neutron signal and detection efficiency

Hybrid event detection demands disentanglement of Cherenkov and scintillation light

- Hybrid event detection: Combine Cherenkov and scintillation signals
- Better particle identification and discrimination of event topologies
- Improved energy reconstruction through higher light yield and through detection of missing hadrons
- Improved neutron signal and detection efficiency

"Eierlegende Wollmilchsau"

A pig that bears merino wool and furthermore lays eggs, too

09/20

10 / 20

Hybrid signal allows (potentially) for broad physics program: (Potentially) Unprecedented levels of background rejection, with low energy threshold

10 / 20

Hybrid signal allows (potentially) for broad physics program: (Potentially) Unprecedented levels of background rejection, with low energy threshold

Water-based Liquid Scintillator

11/20

- Combination of pure water with liquid scintillator in micelles
- Directionality & kinematic reconstruction (Cherenkov)
- High(er) light yield & improved energy reconstruction (scintillation)

Water-based Liquid Scintillator

- Combination of pure water with liquid scintillator in micelles
- Directionality & kinematic reconstruction (Cherenkov)
- High(er) light yield & improved energy reconstruction (scintillation)

Combines the advantages of water and liquid scintillator
 Potential for reconstruction of event topologies and unprecedented background rejection

Water-based Liquid Scintillator

Timing

"instantaneous" Cherenkov
vs. delayed scintillation light
→ ns resolution or better

Angular distribution

increased PMT hit density under Cherenkov angle → sufficient granularity

• Low scintillator concentration: Cherenkov signal still visible

12/20

- Scintillation: slow compared to Cherenkov light
- Scintillation: isotropic Cherenkov: directional
- Is ANNIE detector capable of hybrid event detection, using WbLS?

International WbLS Effort

- EOS (USA, 20-ton)
- Brookhaven 1-ton and 30-ton (USA)
- BUTTON (UK, 20-ton)

SANDI

- 90 cm x 72 cm acrylic vessel filled with WbLS, ~366 L submerged in ANNIE
- WbLS produced in Brookhaven 1% organics, Gd-compatible
- Deployment: 2 months in 2023

Goals:

Proof-of-principle for hybrid event detection
 => Done! JINST 19 P05070 (2024)

Work to be done:

- Measure the WbLS light yield
- LAPPD Che/scint time separation
- Search for hadronic component
- Improved energy/vertex reco.
- Search for NC events

Scintillator for ANNIE Neutrino Detection Improvement

Pictures of SANDI Deployment

15 / 20

Neutrino Candidates

- ANNIE with SANDI for 2 months: Two event populations
 - 1) Similar events as ANNIE without SANDI due to MRD mis-reconstruction
 - 2) Muons with actual scintillation contribution
- Starting around 2000 downstream p.e.: muons can pass SANDI
- Scintillation: Stronger linear dependency between downstream / upstream charge

Summary

17 / 20

- ANNIE has already achieved significant milestones
- First detection of beam neutrinos in Gd-loaded water
- First detection of beam neutrinos using LAPPDs
- SANDI-1 deployment: Proof-of-principle of hybrid event detection of beam neutrinos in WbLS => Done! JINST 19 P05070 (2024)
- Production, shipment, deployment, measurement, draining: ~9 months => WbLS shows good stability!
- Cherenkov+scintillation light has been detected for different event topologies

• One main goal of ANNIE is the investigation of the hybrid event detection concept, using WbLS => We are on a good path

Outlook: More WbLS Hybrid Event Detection

18 / 20

• Second 2 month SANDI deployment until Feb. 2025:

- Gd-loaded WbLS => enhanced neutron detection
- We have doubled our WbLS statistics!
- Deployment of AmBe neutron source
- More exciting work:
 - Measure intrinsic WbLS light yield (possible)
 - LAPPD Che/scint time separation (low stat.)
 - Search for hadronic component (low stat.)
 - Search for neutral current events (low stat.)
 - Enhanced Neutron sensitivity (AmBe source) Mon, 17:45, T17.5 — Amala Augusthy
 - Improved energy/vertex reconstruction Wed, 17:15, T59.5 — Daniel Bick

Outlook: BIGGER WbLS Hybrid Event Detection

19/20

- Super-Kamiokande: 50 kt water
- Jiangmen Underground Neutrino Observatory (JUNO): 20 kt liquid scintillator
- IceCube Neutrino Observatory: 1 km³ frozen water
- Deep Underground Neutrino Experiment (DUNE): 70 kt liquid argon
- 3661 WbLS~ 0.0004 kt WbLS is a bit small for a neutrino experiment!

Outlook: BIGGER WbLS Hybrid Event Detection

19/20

- Super-Kamiokande: 50 kt water
- Jiangmen Underground Neutrino Observatory (JUNO): 20 kt liquid scintillator
- IceCube Neutrino Observatory: 1 km³ frozen water
- Deep Underground Neutrino Experiment (DUNE): 70 kt liquid argon
- 3661 WbLS~ 0.0004 kt WbLS is a bit small for a neutrino experiment!
- => Make Big-SANDI Thu, 17:45,T81.7 — Philipp Kern

Outlook: BIGGER WbLS Hybrid Event Detection

Soaking tests (chemical stability)

20/20

Breaking tests (mechanical stability)

Thank you for your attention!

Supplementary slides

ANNIE Collaboration

Universität Hamburg

FLORIDA STATE UNIVERSITY

IOWA STATE UNIVERSITY UCDAVIS

WARWICK THE UNIVERSITY OF WARWICK

DEMOKRITOS

भारतीय प्रौद्योगिकी संस्थान कानपुर Indian Institute of Technology Kanpur

Fermilab Accelerator Complex

Fermilab Accelerator Complex

- Accellerator provides $E_{kin} = 8 \text{ GeV}$ protons to BNB
- Maximum average repetition rate for BNB is 5 Hz
- 84 bunches of protons in a beam spill of $\Delta t = 1.6 \, \mu s$
- We know when the protons are coming (clock signal)
- We know how many protons are coming (beam monitoring)

Neutrino Flux Predictions

- Neutrinos are produced at Beryllium target
- MiniBooNE collaboration simulated neutrino flux predictions
- Muon neutrinos ~ 93%, muon anti-neutrinos ~ 6%, electron (anti) neutrinos <1%
- Mean neutrino energy ~700 MeV
- => Close proximity to beam target: high neutrino flux of ~10 000 CC/ton/year

ANNIE Detector

- Front Muon Veto (FMV): 26 scintillator paddles to reject upstream dirt muons
- Water Tank:
 - ~3 m x 4 m volume filled with 26 t water with 0.2% $Gd_2(SO_4)_3$
- Photosensors:
 - ~132 PMTs, up to 5 LAPPDs for light collection and event reco.
- Electronics rack: Data acquisition (DAQ) system
- Muon Range Detector (MRD) 310 scintillator paddles, 5 vertical, 6 horizontal. Used for muon reco.

Event Selection

Selection of events for troughgoing muons and neutrino candidates: ANNIE w/o WbLS: December 2022 – March 2023 ANNIE with WbLS: March 2023 – May 2023 Coincidence between Beam, Tank and MRD Select events with MRD reco. track through SANDI

Throughgoing Muon Events

- ANNIE without SANDI: only Cherenkov light + reflection
- ANNIE with SANDI: Two event populations
 - 1) Similar events as ANNIE without SANDI due to MRD mis-reconstruction
 - 2) Muons with actual scintillation contribution
- Scintillation: Stronger linear dependency between downstream / upstream charge

Throughgoing Muon Events

- Upstream with SANDI: Small contribution of reflected Cherenkov + scintillation
- Downstream with SANDI:

Dominated by direct Cherenkov hits + scintillation. Absorption of Cherenkov light due to acrylic vessel and WbLS visible due to broadening of charge distribution.

Neutrino Candidates

- Upstream with SANDI: Small contribution of reflected Cherenkov + scintillation Two event populations visible => Neutrino events with Cherenkov+scintillation!
- Downstream with SANDI: Dominated by direct Cherenkov hits + scintillation

Event Selection: Michel Electrons

Michel electrons have well known energy distribution: Ideal candidates for scintillator investigation and calibration

Select time coincidence between muon and electron candidates Muon: FMV signal, no MRD trigger, charge cut [1000, 4000] p.e. Electron: Event time difference $\Delta t < 6000$ ns

Event Selection: Michel Electrons

Look at electron candidate Δt distribution for validation of selection Expected lifetime of muons in water + gadolinium: (1.788 ± 0.002) µs Selection of electron events looks correct

Michel Electron Charge Spectrum

- Michel electrons have well known energy distribution, smeared by detector response
- Comparison of charge distribution shows existence of scintillation
- Two event populations for SANDI
- Larger relative number of events above ~550 p.e.:
 - => Electrons confined within SANDI

Michel Electron Charge Spectrum

 $k_{SANDI} = 14.44 \pm 0.87 \text{ p.e./MeV}, k_{Water} = 8.17 \pm 0.14 \text{ p.e./MeV} => k_{SANDI} / k_{Water} = 1.77 \pm 0.08$

Effective increase in detected number of photo-electrons is +77% due to scintillation

Neutron Detection Principle

- CC interaction in the tank (fiducial volume): Prompt event in 2µs window around beam trigger
- Muon is produced and may be reconstructed (direction, energy)
- Neutrons thermalize in the water volume
- Neutron capture on Gd detected by the PMTs: Second window of 68µs to catch all neutrons Gadolinium has the best neutron capture cross section 50000 barn, 30µs capture time, compared to 0.3 for protons or ~250µs Gd produces on average 4-5 gammas, 8 MeV total energy (proton: 2.2 MeV)

WbLS Energy Reconstruction

- First MC simulations done by Michael Nieslony
- Neutrino energy reco based on muon track reco.

$$E_{\nu} = E_{\nu}(\text{CCQE}) + f_{\text{corr}} \cdot Q_{\text{non-muor}}$$

- Preliminary studies seem promising
- Needs more work to actually implement it in the analysis.
- I) Reconstruct track (vertex, dir) (assume a given reconstruction uncertainty for initial study)

II) Calculate muon signal based on fitted track parameters

propagate estimated muon light contribution to PMTs & LAPPDs

III) Calculate amount of hadron scintillation light

Remaining hits should correspond to hadron scintillation contribution

Throughgoing Muons

- Upstream with SANDI: Small contribution of reflected Cherenkov + scintillation
- Donwstream with SANDI:

Dominated by direct Cherenkov hits + scintillation. Absorption of Cherenkov light due to acrylic vessel and WbLS visible due to broadening of charge distribution.

Exemplary Selection Cuts

Neutrino candidate charge distribution

Sub-nanosecond timing with LAPPDs

- Electron amplification in flat geometry

 → excellent timing for Cherenkov cone
 → demonstrate enhanced vertex reco
- Incom's Gen-I LAPPDs feature
 - Large detection area (8" x 8")
 - Timing: in-situ ~ 50ps
 absolute ~ 100ps
 - Anode structured in strips,
 28 strips with double-sided readout
 → spatial resolution better ~1cm

13

ANNIE LAPPD module

- Overall, 5+1 LAPPDs available
- To maintain sub-nanosec resolution, signals have to be digitized directly at the LAPPDs → underwater electronics
- 28 anode strips are read out at both ends with PSEC4 ADCs
 → sampling rate 10GS/s, 25ns window
 → 2 ACDC cards per LAPPD
- Waterproof housing contains as well HV for LAPPD MCPs and on-board trigger
- → successful integration of LAPPDs in a module suitable for neutrino detectors

DSNB Primary Background

"Present uncertainty on [vNCQE] interactions induces a large error on atmospheric neutrino backgrounds, limiting the sensitivity at low energies where the [DSNB] flux is predicted to be large." – T2K collaboration

DSNB Primary Background

"Present uncertainty on [vNCQE] interactions induces a large error on atmospheric neutrino backgrounds, limiting the sensitivity at low energies where the [DSNB] flux is predicted to be large." – T2K collaboration

GeV-scale CC Neutrino Interactions

GeV-scale CC Neutrino Interactions

Final State Interactions:

- After neutrino-nucleon interaction hadronic component may undergo further interactions.
- Has significant influence on the set of observed particles

Global neutrino physics:

- Knowledge of neutrino-nucleus scattering cross sections is important
- Experiments must measure neutrino energies precisely
- Number of neutrons produced in neutrino interactions is a powerful discriminator between event topologies

Impact of Neutron Multiplicity

Neutron Multiplicity

Final State Interactions (FSIs)

Pion production

- Neutrino Generators important to interpret neutrino data
- Final state interaction (FSI) models important part of the code
- FSI mask evidence of principal neutrino interaction, as hadrons propagate through the residual nucleus

- Simulating nuclear effects is hard => models show significant variations
- ANNIE can improve neutrino generators

Impact of Neutron Multiplicity

• Bias in reconstructed energy affects precise measurement of neutrino oscillation parameters.

• Precise knowledge of neutron multiplicity reduces energy reconstruction uncertainty

=> ANNIE! ANNIE! ANNIE!

FIG. 1: (Color online) The spreading function $d(E_{\nu}, \overline{E_{\nu}})$ of Eq. (4) per neutron of ¹²C in the case of electrons evaluated for three E_{ν} values. The genuine quasielastic (dashed lines) and the multinucleon (dotted lines) contributions are also shown separately.

Search for Rare Physics

Some interesting physics signals have 0 or 1 neutrons.

- Potential proton decay channels: $p \ \rightarrow \ e^{\scriptscriptstyle +} + \pi^{\scriptscriptstyle 0} \ / \ p \ \rightarrow \ K^{\scriptscriptstyle +} + \nu$
- Diffuse Spernova Neutrino Background (DSNB) has large atmospheric neutrino background (Neutral Currents!)
- Current models for the neutron multiplicity in atmospheric background events have large uncertainties.
- Accellerator neutrinos are better understood than atmospheric neutrinos

