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We know of the following elementary fermions
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these flavors are distinguishable only by their masses and couplings to the w* (for the quarks)

flavor physics = study of differences and dynamics between flavors

» Grand scheme: find origin of mass and interaction hierarchies

» Nearer goals: measure standard-model parameters and search for new forces and particles
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The LHCb experiment at CERN's Large Hadron Collider

The LHC symmetrically collides protons with protons at center-of-mass energies of 7-14 TeV

pp — qq + X, pp =W+ X, pp > 2+ X
g=u,d,s, c, bt X = hadrons, charged leptons, neutrinos
Only parts of protons interact with each other, Particles of interest have high momenta

at an energy much less than collision energy. in the beam directions.
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The Belle |l experiment at KEK's SuperKEKB collider

« Tsukuba

3 Tokv;

SuperKEKB asymmetrically collides electrons with positrons at c.m. energies near 10.6 GeV

ete” = ff
f:e,M,T,U,d,S,C,b

incoming E(e”) > E(e’) — outgoing system moves in electron direction in lab frame
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LHCb: /\8 decay-rate CP asymmetries

» Find final-state particles
p7r_7r+K_, /\07T+7T_, /\OK+7T_7 /\07T+K_,
» Require

» they come from common point far from pp collision
since A flies before decaying.

» their momentum sum point back to pp collision
since /\‘; comes from pp interaction.

» Veto weakly-decaying intermediate states:
when final-state subset has mass near such a state.

» Use machine-learning algorithm to remove random background

(N’ — pr™)
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AL(AI=3D = 77) =0 and AZL(|AI|=1D —am) <1
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but can calculate it from asymmetries, branching fractions, and D%-D™ lifetime ratio

B, A, + ByAp — %%BMAM

Bi_ + By — 3By

T+

Acp(|AI|=2 D — 7)) =

Asymmetries are limiting inputs, Acp(D® — 7%7°) most limiting.
16/28



Belle II: D° — 7%7° decay-rate CP asymmetry

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

r(p? — 7%7% = (D" — 7%
r(p? — 7%7% + (D" = 7%

ACP(DO — 7T07T0) =

Distinguish D° — 7%7° and D® — 7%7°

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

r(p? — 7%7% = (D" — 7%
r(p°’ — 7°7% + (D% = 7°7°%)

ACP(DO — 7TO7T0) =

Distinguish D’ — 7’7" and D° — n°x° by requiring they come from D** decay:

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

r(p? — 7%7% = (D" — 7%
r(p? — 7%7% + (D" = 7%

ACP(DO — 7TO7T0) =

Distinguish D" — 7°7° and D® — 7°7" by requiring they come from D** decay:
g

D" D% D' - D%~

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

r(p? — 7%7% = (D" — 7%
r(p°’ — 7°7% + (D% = 7°7°%)

ACP(DO — 7TO7T0) =

Distinguish D" — 7°7° and D® — 7°7" by requiring they come from D** decay:
g

D*" — D" D*” — D%~

» Find final state particles: 75070

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

Distinguish D" — 7°7° and D® — 7°7" by requiring they come from D** decay:
g

D*t — D% D*~ - D’x~
» Find final state particles: 75070

» Require

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

r(p? — 7%7% = (D" — 7%

Acp(D® — 7%7%) = —
or( ) r(p? — 7%7% + (D" = 7%

Distinguish D’ — 7’7" and D° — n°x° by requiring they come from D** decay:

D*T — D% D*~ = D%~

» Find final state particles: 75070

» Require

00 . . 0
» 7 7w mass be consistent with D mass

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

Acp(D® — 7%7%) = : —

0

Distinguish D’ — 7’7" and D° — n°x° by requiring they come from D** decay:

D*" — D" D*” — D%~

» Find final state particles: 75070

» Require

00 . . 0
» 7 7w mass be consistent with D mass

> 75 7%7% mass consistent with D*-D° mass difference

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

Acp(D® — 7%7%) =

0

Distinguish D’ — 7"7” and D° — 77" by requiring they come from D** decay:

D*" — D" D*” — D%~

» Find final state particles: 75070

» Require

> 7%7° mass be consistent with D® mass
> 75 7%7% mass consistent with D*-D° mass difference

> D** have enough momentum to not come from B decay

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

Acp(D® — 7%7%) =

0

Distinguish D’ — 7"7” and D° — 77" by requiring they come from D** decay:

D*" — D" D*” — D%~

» Find final state particles: 75070

» Require

00 . . 0
» 7 7w mass be consistent with D mass

> 75 7%7% mass consistent with D*-D° mass difference

» D** have enough momentum to not come from B decay — don't inherit Agp from B decay

17/28



Belle II: D° — 7%7° decay-rate CP asymmetry

Acp(D® — 7%7%) =

Distinguish D’ — 7"7” and D° — 77" by requiring they come from D** decay:
D*t = D% D*” — D%~

» Find final state particles: 75070

» Require
00 . . 0
» 7 7w mass be consistent with D mass

> 75 7%7% mass consistent with D*-D° mass difference

» D** have enough momentum to not come from B decay — don't inherit Agp from B decay

» Use machine-learning algorithm to remove background.
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symmetry

Fit to the mass and Am spectra to get signal yields, V D? — 7%7%) and N(D° — 7°=°).
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Again this the raw asymmetry is not the CP one
An(D*t = D%t D% = 7%7%) = A (D° — %70 + prd(D*Jr) + Ages(7)

> Aoa(D ) = from e"e” — cc forward-backward asymmetry
cancel by averaging over forward and backward D*

Ay = AR + A% = Acp(D° > 77°) + Ay (r")
> calculate Ay, (77) from D*F — D% D% —» K ot
Ay(D® - K 7t w/ D req.) = Acp(D® = K m ") + A (77) + Ao (K7 1)
Ay(D® - K 7" w/o D* req.) = Acp(D® — K 7 1) + Ager (K™ 1)
So
Ager(77) =AN(D° = K 7", w/ D* req.) — Apn(D° = K 7", w/o D* req.)
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Status in D — 7

DY — 7t 7% ° :
D & 7tr a gl
D% — 7071 /
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Belle Il measured it (using Belle data, too),
learning D° flavor from
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Acp(D? = KIKY) = (-1.4+£13+0.1)%
[Belle II: PRD111.012015, 2025]

» charm flavor tagger
new algorithm that looks at rest of event,
ete” 5 cc > D%+ Xe
[Belle Il: PRD107.112010, 2023]
first used for this analysis.

Acp(D® = KIKY) = (1.3+2.0+0.3)%
[Belle 1l: Moriond EW, 2025]

» combined:

Acp(D°® = K2K2) = (—0.6 £1.1+0.1)%
[Belle 1l: Moriond EW, 2025]

> and with LHCb (2021, 2015) & Belle (2017)

Acp(D? = K2KY) = (-1.3+0.8)%

Nearing CP-violation discovery.
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LHCb: new search for CP violation in D° — K*#T

LHCb recently measured decay-time dependence of decay-rate ratios

(D% — K x7) rD° — K«
— =0 _,+r —. an 0 o= .
I'D" —K"'7n) D" —-K7")

where D" and D” are the produced states—they oscillate before decaying.

From this, we learn about D°-D° mixing

and Acp(D® — K™ 77), which the standard-model expects to be zero (less than 107°).

Acp(D® = K'n7) = (—6.6 £5.7) x 10> [LHCb: PRD111.012001, 2025]

Inching towards testing the standard model.
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Lepton-flavor universality = e, p, and 7 have the same electroweak couplings.

We can test that with leptonic 7 decay:
9r

W
Ye

(e~ = e 1,7) o |g, |’

2
|9 |
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W
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require one 7 decay leptonically and the other decay hadronically (to 7r+71'0).

» Find only two charged particles, opp'ly charged,
and one or more m° (in one hemisphere)
» Require
> large thrust, high missing mass, low missing p,,
to isolate eTe” — 77
» charged particle in ° hemisph. not look like et
tovetoeTe” —efe™.

> other charged particle look like et or ,ui.

» Use neural network to remove background.

> Fit to p, spectra to get branching-fraction ratio.

thrust axis = axis most along momenta » Study lepton-ID efficiencies and correlations.
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Belle Il: Testing lepton universality with leptonic 7 decay

9u=0e
| CLEO (1997)
1.0026 = 0.0055
. BaBar (2010)
1.0036 +0.0020
> HFLAV fit (2021)
1.0019 +£0.0014
o Belle 11 (2024)
0.9974 +0.0019

L 1 L L L L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L
099 1.00 101 102 103 104 1.0
|9u / Gel+

[Belle 1I: JHEP08.205, 2024]
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Belle II: Other recent 7 measurements

» Limits on lepton-flavor violation:
B(r~ =A%) < 4.7 x 1078 @ 90% credibility
Bt~ = N’77) < 43 %1072 @ 90% credibility
B(r~ = u pTpT) <1.9%x 1078 @ 90% credibility

[Belle 1l: PRD110.112003, 2024]
[Belle 1l: PRD110.112003, 2024]

[Belle 1l: JHEP09.062, 2024]
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Belle II: Other recent 7 measurements

» Limits on lepton-flavor violation:

B(r~ = A7) < 4.7 x 107 @ 90% credibility [Belle I1: PRD110.112003, 2024]
B(r~ = A°77) < 4.3 x 1078 @ 90% credibility [Belle Il: PRD110.112003, 2024]
B(t™ — u_u+u_) <1.9%10°% @ 90% credibility [Belle Il: JHEP09.062, 2024]
» Measurement ofr mass:
PD?7¢Z;r:gie0(f|222) . 17\JUE|| :: 523\2/022323 prelim. (with Belle Il and KEDR 2023)
BES (1996) ; ———__ 68% CL contour
177696 557 o7 —
BELLE (2007)
1776.61+0.13 +0.35 i
KEDR (2007) ; 0.1785
1776.81 702 £0.15 !
BaBar (2009) i ‘o
1776.68 £0.12 £ 0.41
BES Il (2014) .
1776.91£0.12 3010 : 0.1780
Belle Il (2023) i
1777.09 +0.08 +0.11 -
PR RS RPN S Sl I
1776 1776.5 1777 289.5 290.0 290.5 291.0 2915
[Belle 1I: PRD108.032006, 2053[MeV/c?] e
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Summary
Belle Il & LHCb are very active.

| have highlighted only a few recent results.
Give me another 25 minutes and I'm happy to talk about more.
» Discovery of CP violation in baryons:
A S pK rta, APKTK™
» Search for physics beyond standard model via Acp(D decay):
D° — 7%7° KIKZ, KEKT
» Testing testing lepton universality in T decay:
T e Ul i VT,

Both experiments are active in many other areas, including

» study of quarkonia, tetraquarks, pentaquarks » hadron spectroscopy
» dark-matter searches » measuring electroweak parameters
» measuring quark-mixing-matrix parameters » study of B mesons
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Some event counts

> Acp(A) = ---) @ LHCb

Nrta™  636+42
AKtr™ 618432
AOKTK™ 1920+ 50

pKTrtr™ 80690 + 340
> Acp(D® = ---) @ Belle Il
700 0(104)
KIKS 2214451 Belle Il
4864 =78 Belle
» D° - K*#T @ LHCb
Ktn~ 412 x 10°
K-zt 1.6 x 10°
> 77 — (v, @ Belle Il
e 4.4 x10°
u 4.4 x10°
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The flavor intensity frontier: Belle Il and LHCb
and some of their recent results

Daniel Greenwald

Institute for Hadronic Structure & Fundamental Symmetries
Technische Universitat Miinchen

DPG Friihjahrstagung 2025
Gottingen, April 4, 2025



What is flavor physics?

We know of the following elementary fermions

OOG
GO
GOOO
GO

these flavors are distinguishable only by their masses and couplings to the w* (for the quarks)

flavor physics = study of differences and dynamics between flavors

» Grand scheme: find origin of mass and interaction hierarchies

» Nearer goals: measure standard-model parameters and search for new forces and particles
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The LHCb experiment at CERN's Large Hadron Collider

The LHC symmetrically collides protons with protons at center-of-mass energies of 7-14 TeV

pp — qq + X, pp =W+ X, pp > 2+ X
g=u,d,s, c, bt X = hadrons, charged leptons, neutrinos
Only parts of protons interact with each other, Particles of interest have high momenta

at an energy much less than collision energy. in the beam directions.
2/28



The LHCb detector

LHCb Detector )

Weight: 5,600 tonnes Electromagnetic
eight

Longih: 20 m Calorimeter

Vertex
Locator

Tracking W
Station : uon
Dipole Hadronic  Stations

Tracking i
Magnet Stations Calorimeter

Detects and identifies e, ui, =, K%, pi; Y

Reconstructs Kg — 7r+7r_, A pm, ° Y7,

It's a forward detector
consisting of

> vertex & tracking detectors
measure charged-particle trajectories,
determine p from bending in B field

» ring-imaging Cherenkov det’s
identify charged-particle types
(", K*, )

» calorimeters
measure particle energies

» muon detectors
detect muons
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The Belle |l experiment at KEK's SuperKEKB collider

« Tsukuba

3 Tokv;

SuperKEKB asymmetrically collides electrons with positrons at c.m. energies near 10.6 GeV

ete” = ff
f:e,M,T,U,d,S,C,b

incoming E(e”) > E(e’) — outgoing system moves in electron direction in lab frame
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The Belle |l detector

Centralm i
Drift

Detects and identifies e, ui,

Reconstructs Kg — 7r+7r_, A°

Ki-Muon !
Detector

Barrel and Forward
Particle ID Detector

It's a 47 detector
consisting of

> vertex det’s & drift chamber
measure charged-particle trajectories,
determine p from bending in B field

Particle ID (Cherenkov) det’s
identify charged-particle types
(x5, KE, )

calorimeter
measure particle energies

K. & muon detector
detect K| & muons
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Taking data since 2010.

20 —2024 (13.6 TeV): 9.56 fb ™"
18 &~ —2023(13.6 TeV): 0.37 b
£ —2022(13.6TeV): 0.82 b
16— —2018(13TeV):2.191b"
£ —2017(13TeV): 1.71 fb”"
14 —2016(13TeV): 167"
E 2015 (13 TeV): 0.33 fb™'
12 —2012(8Tev):2.081b”!
£ —2011(7 TeV): 1.11 (b':
E 2010 (7 TeV): 0.04 fb”
10 (77ev) Ls2 /7

/

/ LSt
yd I I I I L

1
2009 2011 2013 2015 2017 2019 2021 2023 2025
Year

Integrated Recorded Luminosity (fb™*

o N & O
T[T
~~

D

Belle I

» Taking data since 2019.

Total integrated Weekly luminosity [fb™*]

175 Integrated luminosity 600
mmm Recorded Weekly

15.0 s [ Lhecoreq dt = 575.47 [fb7] e B
/ 500
£
125 | .S
400 3
<
100 - £
o
7.5 g
<3
g
200
5.0 E
s
S

2.5 v 100

0.0+ o
w@ ﬁv W& W&”’ W@u

Date
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Taking data since 2010.
Collected several fb~ ! of data.

Millibarn cross sections
for pp = qg + X.

trillions of events

high cross sections

D

o

Belle I

» Taking data since 2019.
collected 100s of fb~* of data

» nanobarn cross sections
forete” — ff.

v

» 100s of millions of events
> high luminosity (world's highest)

lots of data = high intensity — precise measurements |

can study particles heavier than B, 5.3 GeV
larger lab-frame momenta

more data

> can (better) detect y's and reconstruct ©°’s
» can study decays to invisible particles

» can study 7 decay
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Bundesministerium
% fiir Bildung (D
und Forschung @

Belle I
» 1700 members > 1200 members
» 100 institutes > 124 institutes
» 22 countries » 28 countries

German Contributions

» Aachen » Dortmund » Bonn » Heidelberg
> Bonn » Heidelberg » Giessen » Karlsruhe
> Bochum Uni, MPK » Gottingen > Mainz

» Freiburg » DESY » Miinchen

LMU, MPP, TUM
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Let’s look at some of the most recent measurements.

Focusing on

» what we measure,
limited to my personal selection,
given the time constraints,

» why we measure it, and

» how we measure it.
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Let’s start with CP violation

CP = swaps left-handed particles and right-handed antiparticles
CP violation = CP conjugated states behaving differently

Why do we care?

» Universe is CP asymmetric—made of matter, not antimatter.
= better understand where and how CP is violated.

» Standard model predicts particular processes are CP symmetric.
= search for new forces and particles beyond the standard model.

One method: measure decay-rate CP asymmetries

(X — abc) — T'(X — abc)
I'(X — abc) + T'(X — abe)

€ [-1,1] =

B zero — CP conserving

nonzero — CP violating

9/28



LHCb: search for CP violation in baryon decay

Why? CP violation is not a widely-scene phenomenon:

1964 CP violation in K° mixing strange meson

1999  CP violation in K° decay strange meson

2001 CP violation in B° mixing & decay = bottom meson

2004  CP violation in B° decay bottom meson

2012  CP violation in BT decay bottom meson

2013  CP violation in Bg decay bottom-strange meson
2019 CP violation in D° decay charm meson

CP violation was not seen in process involving baryons.
Yet the CP asymmetry of the universe is a baryon-antibaryon asymmetry

LHCb measured the decay-rate CP asymmetries of some decays of the /\E, baryon
ul d
b

> for Ap — Axta™, A°KTn™, A%rTKT, [LHCb: PRL134.101802, 2025

> for A0 = pK 7 r™ [LHCb: Moriond EW, 2025]



LHCb: /\ﬁ decay-rate CP asymmetries

LHCDb detector




LHCb: /\8 decay-rate CP asymmetries

» Find final-state particles
p7r_7r+K_, /\07T+7T_, /\OK+7T_7 /\07T+K_,
» Require

» they come from common point far from pp collision
since A flies before decaying.

» their momentum sum point back to pp collision
since /\‘; comes from pp interaction.

» Veto weakly-decaying intermediate states:
when final-state subset has mass near such a state.

» Use machine-learning algorithm to remove random background

(N’ — pr™)
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Selected candidates are predominantly correct

0 .
Ap, but also incorrect ones.

14000

12000

10000

014 GeV/c?)

8000

6000

4000

Candidates / (0

2000

LHCb 9 fb™!
1 Data
Total fit
-------- AZ — pK

E) = pK wm
-------- Comb. bkg.
—— A = pKmtaa®

—— A) = pK ) (=mmty

-
1

A) = prata-
—— A) > pKK*m~

A\—— Z) = pK K"

J

-1
LHCDb 9 fb
1 Data
Total fit
-------- Z; — pK*rw
—0
— &, > pK*nm*
-------- Comb. bkg.
—0
—— A, > pK'mata’

—— A, = pK (= 7ty)

ZZ) — patrmt
—0
—— A = pKK 7t

—=0
\— &, - pK'n K"

J

5.8 6
m(pK ~mwta) [GeV/c?]

4

Fit to the mass spectra to get signal yields, N(/\g —

likewise for /\07r+7r_, ...

56 58 6
m(pK* n-n) [GeV/c?]

--Yand N(AY — ).
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From fit results, calculate raw asymmetry
N(Ay = ---) = N(A; — fop's)
N(AS = -++) + N(Ag = Fsp's)
= Acp (A = 5'S) + Aproa(s) + Ager(fsp's)

Ao (N — fsp's)

Aprod(/\g) = asymmetry of production of /\g and KE from pp collision
Aget(fsp’s) = asymmetry of detection of I\g and KE decay products
Use raw asymmetry in /\S — AJ7™ to remove these:
Acp(A] = f5p's) = A (Ag = fsp's) = Apa(AD) — Agei(fsp's)
0=Acp(Ay = A7) = Ay (Ag = ATT7) = Ap0a(A) — Aget (A7)
Al final state chosen to match /\g’s.
LHCb reported two significant asymmetries

Acp(N) = N°KTK™) = (83+234+16)%  —  3.10  [LHCb: PRL134.101802 2025]
Acp(N) = pK T 77) = (2454£0.46 £0.10)% — 520  [LHCb: Moriond EW, 2025]
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LHCb: /\8 decay-rate CP asymmetries

Acp(A) = pK ' n) = (245 £0.46 £ 0.10)% — 5.20| [LHCb: Moriond EW, 2025]

LHCb observed CP violation in baryon decay.

1964  CP violation in K° mixing strange meson

1999  CP violation in K° decay strange meson

2001  CP violation in B° mixing & decay  bottom meson

2004  CP violation in B° decay bottom meson

2012  CP violation in BT decay bottom meson

2013  CP violation in Bg decay bottom-strange meson
2019 CP violation in D decay charm meson
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Belle Il & LHCb: D — 77 decay-rate CP asymmetries

Let’s look at charm—at decays of D mesons
CONCONCONCO
DF D° D° D~

to pion pairs

. . 1
isospin 3

T ata o | isospin superpositions: 0+1+42, 0+2, 2

Standard model:
AL(AI=3D = 77) =0 and AZL(|AI|=1D —am) <1
> Dty 0 _3 SM + -\
— m 7 only has [AI| = 3, so Agp (DT =777 ) =0

» D° — 77 has both |AIl = r and , but nonzero 4?}1 only from \A[\:% part.
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Belle Il & LHCb: D — 77 decay-rate CP asymmetries
> AP (DT s xtr%) =0

> A‘%}I(DO — 7m) only from 4?1}5(|A[\:% D — 77) and small

So, if we measure

» ACP(D+ — 7T+7TO) # 0
— something beyond the standard model
» Acp(D® — 7777 ) and Agp(D® — 7%7°) inconsistent with Acp(|AII=% D — )

— something beyond the standard model

Can't directly measure Acp(|Al|=1 D — 77),
but can calculate it from asymmetries, branching fractions, and D%-D™ lifetime ratio

B, A, + ByAp — %%BMAM

Bi_ + By — 3By

T+

Acp(|AI|=2 D — 7)) =

Asymmetries are limiting inputs, Acp(D® — 7%7°) most limiting.
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Belle II: D° — 7%7° decay-rate CP asymmetry

Acp(D® — 7%7%) =

Distinguish D’ — 7"7” and D° — 77" by requiring they come from D** decay:
D*t = D% D*” — D%~

» Find final state particles: 75070

» Require
00 . . 0
» 7 7w mass be consistent with D mass

> 75 7%7% mass consistent with D*-D° mass difference

» D** have enough momentum to not come from B decay — don't inherit Agp from B decay

» Use machine-learning algorithm to remove background.
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Belle II: D° — 7%7° decay-rate CP asymmetry

a r —————— T a s Rt S . . SN —
>t Belle IT | Ldr =428 5™ 7 % 2500 - Belle Il | Lar=428 85" 3
Z 1000 —— Data -] = E —— Data ]
g 500 F —— Total fit ] S 2000 - —— Total fit 3
2 B - K0 B 2 E [ Ry ]
§ 600 Combinatorial Back. 7 % 1500 |- Combinn(orinl Back.
=] =] F ]
g 3 2 F ]
“ 400 - . S 1000 =
LW, o ]
“~ NS
0 / 0 2 A///A/////-

17 18 19 2 2.1 0.14 0.142 0.144 0.146 0.148 0.15 0.152 0.154 0.156 0.158 0.1¢
m(r’n’) [GeV/c?] Am[GeV/c?]
o = o =
3 E 3 E

symmetry

Fit to the mass and Am spectra to get signal yields, V D? — 7%7%) and N(D° — 7°=°).
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Belle II: D° — 7%7° decay-rate CP asymmetry
Again this the raw asymmetry is not the CP one
An(D*t = D%t D% = 7%7%) = A (D° — %70 + prd(D*Jr) + Ages(7)

> Aoa(D ) = from e"e” — cc forward-backward asymmetry
cancel by averaging over forward and backward D*

Ay = AR + A% = Acp(D° > 77°) + Ay (r")
> calculate Ay, (77) from D*F — D% D% —» K ot
Ay(D® - K 7t w/ D req.) = Acp(D® = K m ") + A (77) + Ao (K7 1)
Ay(D® - K 7" w/o D* req.) = Acp(D® — K 7 1) + Ager (K™ 1)
So
Ager(77) =AN(D° = K 7", w/ D* req.) — Apn(D° = K 7", w/o D* req.)
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Belle II: D° — 7%7° decay-rate CP asymmetry

Acp(D® = 7°7%) = (3.0 £ 7.2+ 2.0) x 1073 [Belle & Belle II: Moriond EW, 2025]

Let's calculate Agp(|AI|=3 D — 7).

Using
> Acp(D? = 7°7°%) = (1.1+4.9) x 1073 from Belle 1l (2025) and Belle (2014)
> Acp(D® = nfr7) = (2.3+£0.6) x 1073 from LHCb (2022)

> Acp(DT— 77 7%) = (4.2 4 7.9) x 1072 from LHCb (2021), Belle (2018), and CLEO (2010)

Acp(|AI|=3D = 7m) = (1.5+£04+£21+14) x 107> = (1L.5+2.5) x 10>

uncertainty from D® — %7 drops by 25%, total uncertainty drops by 19%.
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Status in D — 7

DY — 7t 7% ° :
D & 7tr a gl
D% — 7071 /
|AI|=3 D — 7] ——tot——
—e—q
-5 0 5 10

(42+£79)x107?

(2.340.6) x 107°

(1.1+4.9) x 107°

(1.5+2.5) x 107°
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Belle 1I: new measurements of Aqp(D® — K2K2)

In standard model Acp(D® — K2K2) could be as large as %.

Belle Il measured it (using Belle data, too),
learning D° flavor from

> D*-‘r N D07T+

Acp(D? = KIKY) = (-1.4+£13+0.1)%
[Belle II: PRD111.012015, 2025]

» charm flavor tagger
new algorithm that looks at rest of event,
ete” 5 cc > D%+ Xe
[Belle Il: PRD107.112010, 2023]
first used for this analysis.

Acp(D® = KIKY) = (1.3+2.0+0.3)%
[Belle 1l: Moriond EW, 2025]

» combined:

Acp(D°® = K2K2) = (—0.6 £1.1+0.1)%
[Belle 1l: Moriond EW, 2025]

> and with LHCb (2021, 2015) & Belle (2017)

Acp(D? = K2KY) = (-1.3+0.8)%

Nearing CP-violation discovery.
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LHCb: new search for CP violation in D° — K*#T

LHCb recently measured decay-time dependence of decay-rate ratios

(D% — K x7) rD° — K«
— =0 _,+r —. an 0 o= .
I'D" —K"'7n) D" —-K7")

where D" and D” are the produced states—they oscillate before decaying.

From this, we learn about D°-D° mixing

and Acp(D® — K™ 77), which the standard-model expects to be zero (less than 107°).

Acp(D® = K'n7) = (—6.6 £5.7) x 10> [LHCb: PRD111.012001, 2025]

Inching towards testing the standard model.
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Belle Il: Testing lepton universality with leptonic 7 decay

Lepton-flavor universality = e, p, and 7 have the same electroweak couplings.

We can test that with leptonic 7 decay:
9r

W
Ye

(e~ = e 1,7) o |g, |’

2
|9 |

9r

W

g/l,

D17 = p vy,) «

G

Ye

i

B(t™ = u I #>

B(tm — e v.1,)

19-1” 1gu”
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Belle Il: Testing lepton universality with leptonic 7 decay

+ +

clean data set frome e — 7 7 .

require one 7 decay leptonically and the other decay hadronically (to 7r+71'0).

» Find only two charged particles, opp'ly charged,
and one or more m° (in one hemisphere)

> .
- Require
X > large thrust, high missing mass, low missing p,,
R ) to isolate eTe” — 777,
€ i € » charged particle in ° hemisph. not look like et
L7 tovetoeTe” —ete .
Y3 . . + +
> other charged particle look like e™ or p™.

» Use neural network to remove background.

> Fit to p, spectra to get branching-fraction ratio.

» Study lepton-ID efficiencies and correlations.
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Belle Il: Testing lepton universality with leptonic 7 decay

9u=0e
| CLEO (1997)
1.0026 = 0.0055
. BaBar (2010)
1.0036 +0.0020
> HFLAV fit (2021)
1.0019 +£0.0014
o Belle 11 (2024)
0.9974 +0.0019

L 1 L L L L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L
099 1.00 101 102 103 104 1.0
|9u / Gel+

[Belle 1I: JHEP08.205, 2024]
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Belle II: Other recent 7 measurements

» Limits on lepton-flavor violation:

B(r~ = A7) < 4.7 x 107 @ 90% credibility [Belle I1: PRD110.112003, 2024]
B(r~ = A°77) < 4.3 x 1078 @ 90% credibility [Belle Il: PRD110.112003, 2024]
B(t™ — u_u+u_) <1.9%10°% @ 90% credibility [Belle Il: JHEP09.062, 2024]
» Measurement ofr mass:
PD?7¢Z;r:gie0(f|222) . 17\JUE|| :: 523\2/022323 prelim. (with Belle Il and KEDR 2023)
BES (1996) ; ———__ 68% CL contour
177696 557 o7 —
BELLE (2007)
1776.61+0.13 +0.35 i
KEDR (2007) ; 0.1785
1776.81 702 £0.15 !
BaBar (2009) i ‘o
1776.68 £0.12 £ 0.41
BES Il (2014) .
1776.91£0.12 3010 : 0.1780
Belle Il (2023) i
1777.09 +0.08 +0.11 -
PR RS RPN S Sl I
1776 1776.5 1777 289.5 290.0 290.5 291.0 2915
[Belle 1I: PRD108.032006, 2053[MeV/c?] e
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Summary
Belle Il & LHCb are very active.

| have highlighted only a few recent results.
Give me another 25 minutes and I'm happy to talk about more.
» Discovery of CP violation in baryons:
A S pK rta, APKTK™
» Search for physics beyond standard model via Acp(D decay):
D° — 7%7° KIKZ, KEKT
» Testing testing lepton universality in T decay:
T e Ul i VT,

Both experiments are active in many other areas, including

» study of quarkonia, tetraquarks, pentaquarks » hadron spectroscopy
» dark-matter searches » measuring electroweak parameters
» measuring quark-mixing-matrix parameters » study of B mesons
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Some event counts

> Acp(A) = ---) @ LHCb

Nrta™  636+42
AKtr™ 618432
AOKTK™ 1920+ 50

pKTrtr™ 80690 + 340
> Acp(D® = ---) @ Belle Il
700 0(104)
KIKS 2214451 Belle Il
4864 =78 Belle
» D° - K*#T @ LHCb
Ktn~ 412 x 10°
K-zt 1.6 x 10°
> 77 — (v, @ Belle Il
e 4.4 x10°
u 4.4 x10°
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