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What is a container 
And do I need to give it a special treatment

What is a Linux Container
A Linux container is a set of 1 or more processes that are isolated from the rest of the system. All the files 
necessary to run them are provided from a distinct image, meaning Linux containers are portable and 
consistent as they move from development, to testing, and finally to production. 

What do we provide
On the NAF we use apptainer (formerly known as singularity) as a containerization tool

What is a Linux Container from the batchsystems view
Just something you want me to execute in your name on different computers, no matter what you call it 

Why may it be intersting to let Condor know that I intend to run a container
Spoiler: Some additional preparation, mainly the bind mounts of common shares into the container will be done 
automatically 
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Run a container like an executable
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Run a container like an executable
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Let’s make a condor job out of it 
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That was easy – what is all the fuzz about then 
There is more to it if you take a closer look 

• The container in the example is fairly simple in a way that it behaves just like any other executable

– It writes to <STDOUT> which gets captured by HTCondor and written into the outfile location that’s the 
only way we can write into the shared filesystem here as we did not bind-mount any of the usual worker 
mounts into the container

• This example will also not scale, once 1.000 jobs run the container at the same time from AFS there will be 
delays and problems even with a small container like this

• Nothing from inside this container could read or write into a shared filesystems e.g. DUST/AFS etc

• Let’s look at a more common example that comes with some more container specific setup features 

– Use a container located in CVMFS

– Execute a separate executable/script inside that container (no arguments needed)
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Execute a mini script via condor inside an EL8 container
The exectable reads the redhat-release file 
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Execute a mini script via condor inside an EL8 container
The submit file
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Execute a mini script via condor inside an EL8 container
Job submit
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Execute a mini script via condor inside an EL8 container
Output written into the file 
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Overview  of a container job run  
On the workernode

Job submit file 

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

•  Output = <path to output file>

CVMFS DUSTDCACHE AFS
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Overview  of a container job run  
HTC evaluates container part in submit file

Job submit file 

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

•  Output = <path to output file>

CVMFS DUSTDCACHE AFS
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Overview  of a container job run  
Runs container (in this case from CVMFS)

Job submit file 

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

•  Output = <path to output file>

Container

CVMFS DUSTDCACHE AFS
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Overview  of a container job run  
Bind-mounts all ususal data sources 

Job submit file 

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

•  Output = <path to output file>

Container

CVMFS DUSTDCACHE

Bind mounts

AFS
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Overview  of a container job run  
Starts executable with possible args inside the container

Job submit file 

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

•  Output = <path to output file>

Container

CVMFS DUSTDCACHE AFS
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Overview  of a container job run  
Executable is located in DUST

Job submit file 

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

•  Output = <path to output file>

Container

Executable

CVMFS DUSTDCACHE AFS
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Overview  of a container job run  
Executable does it’s magic and reads data e.g. from DCACHE

Job submit file 

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

•  Output = <path to output file>

Container

Executable

CVMFS DUSTDCACHE

Reads data 

AFS
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Overview  of a container job run  
Output get’s written e.g. to DUST

Job submit file 

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

•  Output = <path to output file>

Container

Executable

CVMFS DUST

Output

DCACHE AFS

Writes output
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Overview  of a container job run  
Executable & container stopped with end of job 

Job submit file 

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

•  Output = <path to output file>

CVMFS DUSTDCACHE AFS
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Summary & best practice   
Running jobs in containers is fairly simple  

• Containers technically can be pulled at job runtime from different types of container registries which is OK for testing 
purposes e.g. but will not scale in production 

• Containers can be staged with the job for test purposes (staging is limited to 100MB) will not scale either

• A variety of containers is available in CVMFS and if possible the usage of those is the most elegant way to profit from 
containers

– Only the parts of the container image used by the job will get loaded which is very resource effective compared to 
staging the complete image

• If you use custom containers put them on DUST ! 

• Use the syntax in the submit file (differs from the official one):

– +MySingularityImage = <path to your singularity image>

– Optional:   +MySingularityArgs = "--my-args"

– Bind mounts will be automatically added to your startup

– Use ‘executable = <...> ’ and ‘Arguments = <...>‘ as in usual job submits

• See here for more information: https://wiki.desy.de/naf/documentation/apptainer-support-bird/



Thank you

(Questions ?)
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