
Container in the NAF

A short introduction

Beyer Christoph
Hamburg, 28.03.2025

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

What is a container
And do I need to give it a special treatment

What is a Linux Container
A Linux container is a set of 1 or more processes that are isolated from the rest of the system. All the files
necessary to run them are provided from a distinct image, meaning Linux containers are portable and
consistent as they move from development, to testing, and finally to production.

What do we provide
On the NAF we use apptainer (formerly known as singularity) as a containerization tool

What is a Linux Container from the batchsystems view
Just something you want me to execute in your name on different computers, no matter what you call it

Why may it be intersting to let Condor know that I intend to run a container
Spoiler: Some additional preparation, mainly the bind mounts of common shares into the container will be done
automatically

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Run a container like an executable

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Run a container like an executable

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Run a container like an executable

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Let’s make a condor job out of it

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Let’s make a condor job out of it

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Let’s make a condor job out of it

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

That was easy – what is all the fuzz about then
There is more to it if you take a closer look

• The container in the example is fairly simple in a way that it behaves just like any other executable

– It writes to <STDOUT> which gets captured by HTCondor and written into the outfile location that’s the
only way we can write into the shared filesystem here as we did not bind-mount any of the usual worker
mounts into the container

• This example will also not scale, once 1.000 jobs run the container at the same time from AFS there will be
delays and problems even with a small container like this

• Nothing from inside this container could read or write into a shared filesystems e.g. DUST/AFS etc

• Let’s look at a more common example that comes with some more container specific setup features

– Use a container located in CVMFS

– Execute a separate executable/script inside that container (no arguments needed)

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Execute a mini script via condor inside an EL8 container
The exectable reads the redhat-release file

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Execute a mini script via condor inside an EL8 container
The submit file

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Execute a mini script via condor inside an EL8 container
Job submit

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Execute a mini script via condor inside an EL8 container
Output written into the file

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Overview of a container job run
On the workernode

Job submit file

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

• Output = <path to output file>

CVMFS DUSTDCACHE AFS

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Overview of a container job run
HTC evaluates container part in submit file

Job submit file

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

• Output = <path to output file>

CVMFS DUSTDCACHE AFS

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Overview of a container job run
Runs container (in this case from CVMFS)

Job submit file

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

• Output = <path to output file>

Container

CVMFS DUSTDCACHE AFS

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Overview of a container job run
Bind-mounts all ususal data sources

Job submit file

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

• Output = <path to output file>

Container

CVMFS DUSTDCACHE

Bind mounts

AFS

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Overview of a container job run
Starts executable with possible args inside the container

Job submit file

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

• Output = <path to output file>

Container

CVMFS DUSTDCACHE AFS

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Overview of a container job run
Executable is located in DUST

Job submit file

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

• Output = <path to output file>

Container

Executable

CVMFS DUSTDCACHE AFS

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Overview of a container job run
Executable does it’s magic and reads data e.g. from DCACHE

Job submit file

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

• Output = <path to output file>

Container

Executable

CVMFS DUSTDCACHE

Reads data

AFS

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Overview of a container job run
Output get’s written e.g. to DUST

Job submit file

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

• Output = <path to output file>

Container

Executable

CVMFS DUST

Output

DCACHE AFS

Writes output

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Overview of a container job run
Executable & container stopped with end of job

Job submit file

• Executable = <path-to-executable>

• Arguments = <my arguments>

• +MySingularityImage = <path-to-image>

• +MySingularityArgs = < --my-option= ….>

• Output = <path to output file>

CVMFS DUSTDCACHE AFS

DESY. Page | Container in the NAF | Beyer Christoph, 28.03.2025

Summary & best practice
Running jobs in containers is fairly simple

• Containers technically can be pulled at job runtime from different types of container registries which is OK for testing
purposes e.g. but will not scale in production

• Containers can be staged with the job for test purposes (staging is limited to 100MB) will not scale either

• A variety of containers is available in CVMFS and if possible the usage of those is the most elegant way to profit from
containers

– Only the parts of the container image used by the job will get loaded which is very resource effective compared to
staging the complete image

• If you use custom containers put them on DUST !

• Use the syntax in the submit file (differs from the official one):

– +MySingularityImage = <path to your singularity image>

– Optional: +MySingularityArgs = "--my-args"

– Bind mounts will be automatically added to your startup

– Use ‘executable = <...> ’ and ‘Arguments = <...>‘ as in usual job submits

• See here for more information: https://wiki.desy.de/naf/documentation/apptainer-support-bird/

Thank you

(Questions ?)

	Presentation Title (2)
	Heading Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Thank you

