Higgs self-coupling measurement at the ILC

DPG-Frühjahrstagung der Sektion Materie und Kosmos (SMuK) | 2025/04/03 | Göttingen

Bryan Bliewert^{1,2}, Julie Munch Torndal^{1,2}, Jenny List¹

- ¹ DESY Hamburg
- ² Universität Hamburg

The Higgs self-coupling λ in the SM

$$V(h) = \frac{1}{2}m_H^2h^2 + \lambda\nu h^3 + o(h^4); \lambda_{SM} = \frac{m_H^2}{2\nu^2}$$

v vacuum expectation value (vev) of Higgs field h m_{H} mass of Higgs boson

- \triangleright in SM: λ_{SM} fixed since m_H is known [At/Cm12]
 - deviation from $\lambda = \lambda_{SM}$ hints at BSM physics
 - beyond the SM, many values are possible strong-case for model-independent measurements
 - most projections assume $\lambda = \lambda_{SM}$

The Higgs self-coupling λ in the SM

$$V(h) = \frac{1}{2}m_H^2h^2 + \lambda\nu h^3 + o(h^4); \lambda_{SM} = \frac{m_H^2}{2\nu^2}$$

v vacuum expectation value (vev) of Higgs field h

 m_H mass of Higgs boson

- deviation from $\lambda = \lambda_{SM}$ hints at BSM physics
- beyond the SM, many values are possible strong-case for model-independent measurements
- most projections assume $\lambda = \lambda_{SM}$

Projected sensitivity at 68% probability for k_3 . From [Db20]

The Higgs self-coupling λ in the SM

$$V(h) = \frac{1}{2}m_H^2h^2 + \lambda\nu h^3 + o(h^4); \lambda_{SM} = \frac{m_H^2}{2\nu^2}$$

v vacuum expectation value (vev) of Higgs field h

 m_H mass of Higgs boson

- deviation from $\lambda = \lambda_{SM}$ hints at BSM physics
- beyond the SM, many values are possible strong-case for model-independent measurements
- most projections assume $\lambda = \lambda_{SM}$

Projected sensitivity at 68% probability for k_3 . From [Db20]

Measuring the Higgs self-coupling at e+e- colliders

- \triangleright *Direct access* to λ through double-Higgs production
 - Di-Higgs strahlung (ZHH; dominant < 1 TeV)
 - vector boson fusion (**VBF**; dominant > 1 TeV)

Cross-section of Di-Higgs production processes. From [Du16]

 \triangleright Degredation of sensitivity in ZHH by diagrams without λ

Measuring the Higgs self-coupling at e+e- colliders

- \triangleright Direct access to λ through double-Higgs production
 - Di-Higgs strahlung (ZHH; dominant < 1 TeV)

Focus of this talk

Cross-section of Di-Higgs production processes. From [Du16]

 \triangleright Degredation of sensitivity in ZHH by diagrams without λ

Starting point: Last ZHH Analysis (2016)

- Extensive projections at ILD @ ILC500
 - Based on ILD detector concept (<u>DBD2013</u>, <u>IDR2020</u>) and *fully simulated* event samples
 - 17 background and 3 signal channels
 - Multivariate (MVA) tools for multiple steps
 e.g. lepton and flavor tagging, background rejection etc.
- \triangleright Precision after running $4ab^{-1}$ at 500 GeV:

$$\Delta \sigma_{ZHH}/\sigma_{ZHH}=16.8\%$$
 8 σ observation for ee $ightarrow$ ZHH $\Delta \lambda_{SM}/\lambda_{SM}=26.6\%$ only 3 σ observation for ee $ightarrow$ ZHH

Lepton, neutrino and hadron channel of the signal process ZHH.

Structure of the Analysis

 \triangleright Goal: extract projections with state-of-the-art methods; now at $E_{CM}=550~{\rm GeV}$

- > Goal: extract projections with state-ofthe-art methods; now at $E_{CM} = 550 \text{ GeV}$
- > Major improvements expected due to
 - B-jet-tagging with machine learning
 ParticleNet, ParticleTransformer

- > Goal: extract projections with state-ofthe-art methods; now at $E_{CM} = 550 \text{ GeV}$
- > Major improvements expected due to
 - B-jet-tagging with machine learning
 ParticleNet, ParticleTransformer
 - Better use of kinematic information
 check consistency of event kinematics with hypotheses
 - Kinematic fits

- Soal: extract projections with state-ofthe-art methods; now at $E_{CM} = 550 \text{ GeV}$
- Major improvements expected due to
 - B-jet-tagging with machine learning
 ParticleNet, ParticleTransformer
 - Better use of kinematic information
 check consistency of event kinematics with hypotheses
 - Kinematic fits
 - Matrix element inferred variables
 - Inclusion of VBF contribution to signal higher at increased energies

A classifier motivated by the "matrix element method"

- > Goal: extract projections with state-ofthe-art methods; now at $E_{CM} = 550 \text{ GeV}$
- Major improvements expected due to
 - B-jet-tagging with machine learning
 ParticleNet, ParticleTransformer
 - Better use of kinematic information
 check consistency of event kinematics with hypotheses
 - Kinematic fits
 - Matrix element inferred variables
 - Inclusion of VBF contribution to signal higher at increased energies

Extrapolation: improve total sensitivity $\frac{\Delta \lambda_{\rm SM}}{\lambda_{\rm SM}}$ from 27% \rightarrow 15%

Extrapolation Comparison with HL-LHC ($bb\tau\tau$ only)

ILC 550 GeV

Good sensitivity across a range of non-SM values of λ

Summary and Outlook

- Set up an automated framework for the new ZHH analysis
 - Added kinematic fits, MEM and modern jet tagging to the existing baseline
 - Preselection efficiencies for all channels line up with last study at similar rejection
- > Effort on 550 GeV sample production ongoing
- Next steps:
 - Finalize production of physics background samples
 - Validate ML overlay removal
 - Tune preselection
 - Train channel-specific MVAs to carry out final event selection
 - Extract limits on λ_{ZHH}

From extrapolations: sensitivity on λ ...

18% at 500 GeV @ $4ab^{-1}$ 15% at 550 GeV @ $4ab^{-1}$ 11% at 550 GeV @ $8ab^{-1}$

Backup

Event Selection - Overview

Based on same strategy as 2016 study

New: LO matrix elements (ll, qq), kinematic fits (masses, chi2, fit probabilities)

stared variables* explained below; italic-bold variables new

	llHH (llbbbb)	ννΗΗ (ννbbbb)	qqHH (qqbbbb) split into bbHH and light qqHH
1st Background / Variables	llbb / 9 variables: mZ, thrust, costhrust, pjmax(2jets)*, cos(Z,jet)max*, npfos, npfosmin(4j)*, yminus*, yplus*	bbbb / 6 variables: Evis, ptmiss, thrust, pjmax(6jets)*; ZZ : mZ1, mZ2	bbbb / 9 variables: costhrust, pjmax(6jets)*, yminus*, npfos, npfosmin(6j)*; ZZ : mZ1, mZ2, pjmax(4jets)*, cosjmax(4jets)
2nd Background / Variables	lvbbqq / 7 variables: Evis, mZ, plmin*, m(b34)*, ptmiss, npfos, mva(lepsmall)*	lvbbqq / 11 variables: npfos, npfosmin(5j)*, mMiss; ZHH : mH1, mH2; tt : mW1, mW2, mt1, mt2; pcmax*, yminus*	$bbqqqq$ / 12 variables: npfos*, pjmax(6jets)*, cosbmax*; tt : mW1, mW2, mt1, mt2, χ^2_{tt} ; ZHH : mH1, χ^2_{ZHH} , mH2, mZ
3rd Background / Variables	$ZZH, ZZZ \rightarrow llbbbb / 12+2$ variables: χ^2_{ZHH} *, χ^2_{ZZH} *, $LCME$ ZHH*, $LCME$ ZZH *; ZHH : $mH1$, $mH2$; ZZH : mH , mZ , $p1st$ *, $cos1st$ * ; ZZZ : $mZ1$, $mZ2$, $p1st$ *, $cos1st$ *	$ZZH, ZZZ \rightarrow vvbbbb$ / 12 variables; see $llHH$	$ZZH, ZZZ \rightarrow qqbbbb$ / 12 variables; see $llHH$

Explanation of variables: pjmax(n jets) - leading jet momentum when clustering into n jets / $\cos(Z,jet)$ max - largest angle between reconstructed Z and two of the four jets / npfosmin, npfosmax - smallest, largest number of PFOs in a jet / yminus, yplus - likeliness to be a four instead of three jet event, three instead of two jet event (similar for other selection) / plmin - smallest isolated lepton momentum / m(b34) - invariant mass of jet system related to plus be a four instead of three jet event, three instead of two jet event (similar for other selection) / plmin - smallest isolated lepton momentum / plus be a four instead of three jet event, three instead of two jet event (similar for other selection) / plmin - smallest isolated lepton momentum / plus be a four instead of three jet event, three instead of two jet event (similar for other selection) / plmin - smallest isolated lepton momentum / plus be a four instead of three jet event, three instead of two jet event (similar for other selection) / plus of jet system related to plus be a four instead of two jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event, three instead of two jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar for other selection) / plus of jet event (similar f

Bottlenecks in the ZHH analysis

- \triangleright jet pairing and jet misclustering: "perfect" jet clustering $\rightarrow 40\%$ improvement improve di-jet mass resolution
- > removal of $\gamma\gamma$ overlay: 15% improvement expected important to tackle initial state radiation (ISR)

All improvements are relative

- > flavor tagging: 11% improvement expected from 5% eff. increase with newer LCFIPlus important as $H \to b\bar{b}$ is the dominant Higgs decay channel
- > adding $Z \to \tau\tau$ channel: 8% improvement expected include a yet unaccounted decay channel
- > more modern ML architectures for signal/background selection improvement expected when transitioning from BDTs to (e.g.) transformer-based models etc.
- \triangleright separation of ZHH diagrams with/without the self-coupling would directly improve the sensitivity on λ (lower sensitivity factor)

Expected improvements from DESY-Thesis-16-027

IIHH / Z mass Cut

500 GeV Full Sim

IIHH / H1 mass Cut

500 GeV Full Sim

IIHH / H2 mass Cut

500 GeV Full Sim

IIHH / missing transverse momentum Cut

500 GeV Full Sim

ZHH \rightarrow Ilbbbb analysis (wt. events before cut on $p_t^{miss}/GeV \le 70.0$) ŢŢŶŢŶŢŢŢŢŢŢŢŢŢŢŶŶŢŢŢŶŶŢŢŢŢŢŢŢŢ **ILD** preliminary $\sqrt{s} = 500 \text{ GeV}, L_{int} = 2ab^{-1}$ wt. events / 2.00 GeV eeHHbbbb μμΗΗbbbb . llWW u eeWW นน llaa 25 50 100 125 150 175 200 p_t^{miss} [GeV]

IIHH / thrust Cut

500 GeV Full Sim

Cross section for non-SM λ at the LHC

The Matrix Element Method - An example

Generator level check

> excellent separation

Naive MEM

> even without any

transfer functions, sep. power remains

References

- **Ba19** Philip Bambade et al. *The International Linear Collider: A Global Project* (2019). DOI: 10.48550/arXiv.1903.01629
- **Th13** Mark Thomson. *Modern Particle Physics*. Cambridge University Press, 2013. ISBN: 978-1-107-03426-6. DOI: <u>10.1017/CBO9781139525367</u>
- Na20 Ju, Xiangyang and Nachman, Benjamin. Supervised jet clustering with graph neural networks for Lorentz boosted bosons in Phys. Rev. D., Vol. 102, Is. 7, American Physical Society (2020). DOI: 10.1103/PhysRevD.102.075014
- **Sh20** Yunsheng Shi and Zhengjie Huang and Shikun Feng and Hui Zhong and Wenjin Wang and Yu Sun. *Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification* in *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence* (2021). DOI: 10.24963/ijcai.2021/214
- **To24b** J. Torndal, J. List. *Higgs self-coupling measurement at the International Linear Collider* in *Proceedings of the International Workshop on Future Linear Colliders LCWS2023*, 2023. DOI: 10.48550/arXiv.2307.16515
- **Db20** Jorge de Blas et al. *Higgs Boson studies at future particle colliders* in *Journal of High Energy Physics*, Vol. 2020, Is. 1, Springer Science and Business Media LLC (2020). DOI: 10.1007/JHEP01(2020)139
- **Du16** Duerig, Claude Fabienne. *Measuring the Higgs Self-coupling at the International Linear Collider*. PhD-Thesis, Universität Hamburg. Verlag Deutsches Elektronen-Synchrotron, 2016. DOI: 10.3204/PUBDB-2016-04283
- ILD Collaboration. International Large Detector: Interim Design Report (2020). DOI: 10.48550/arXiv.2003.01116
- Re21 Remi Ete on behalf of the ILD concept group. The ILD Software Tools and Detector Performance (2021). DOI: 10.22323/1.390.0909
- **Ei23** Uli Einhaus. CPID: A Comprehensive Particle Identification Framework for Future e+e- Colliders (2023). DOI: 10.48550/arXiv.2307.15635