Strong-field QED measurement tests at FACET-II using new electron detector concept

<u>Luke Hendriks</u>, Antonios Athanassiadis, Louis Helary, Ruth Magdalena Jacobs, Jenny List, Gudrid Moortgat-Pick, Evan Ranken, Ivo Schulthess, Matthew Wing

DPG Spring Conference, 02.04.2025

Strong-Field QED

Theory

- QED tested to a very high precision
- In a strong electromagnetic background field:
 - The vacuum becomes a nonlinear medium.
 - Electron-Positron pairs can tunnel out of the vacuum!
 - Perturbative approach to QED breaks down
- Key parameters:
 - Schwinger Limit, $\varepsilon_{cr} = 1.32 * 10^{18} \text{ V/m}$
 - Intensity Parameter $(\xi \equiv a_0) \rightarrow$ Effective coupling to background field
 - $\xi \ge 1 \rightarrow \text{Non perturbative}$
 - Quantifies how many photons interact with probe charge

Strong-Field QED

In the Real World

Where are these strong fields achieved?

Magnetars (Neutron stars with B > 10^{10} T)

https://photojournal.jpl.nasa.gov/cat alog/PIA23863

Future lepton colliders

DOI: 10.1103/PhysRevLett.122.190404

Beam-laser interactions

$$\varepsilon_{rest fr} = \gamma \varepsilon_{lab fr}$$

Strong-Field QED

LUXE

- Laser Und XFEL Experiment (LUXE)
- Planned at European XFEL and DESY
- Study transition from QED to Strong Field QED
- High Energy electrons from European XFEL
 → ~10⁹ electrons at 16.5 GeV
- Up to 350 TW Laser
- ξ≤19

Strong Field QED

LUXE

Non-Linear Compton Scattering

- One of the processes to be studied by LUXE
- Multiple Compton edges
- Shifting Compton edge

To capture full Compton spectrum at LUXE, we need a detector able to detect a large dynamic range of electron flux

Electron Detection System (EDS)

Detector Overview

Scintillating Screen and Camera

- Light yield proportional to no. of electrons
- 0.5 mm spatial resolution
- 2% energy resolution

Cherenkov Counter

- Segmented channels ('straws')
- Air-filled steel straws or glass rods
- < 2.1 mm spatial resolution
- More resistant to low-energy background particles

DESY. Page 6

Electron Detection System (EDS)

Cherenkov Counter

Hollow tube filled with air

- Low Cherenkov production rate
- Energy threshold: 21 MeV

Solid glass rod

- Mainly SiO2
- Higher sensitivity to low e⁻ intensities
- Energy threshold: 0.73 MeV

Silicon-Photomultipliers (SiPM)

- High dynamic range
- Low bias voltage

Detector Tests at E320

FACET-II Overview

~ 25 m

Interaction Point for E320

- 10 GeV electron beam, 1.6 nC
- 10 TW laser with ~0.3 J on target
- ξ ≤ 5

Dump Table

In air area with scintillator screens, cameras and other user experiments

DESY. Page 9

glass rods

Detector Tests at E320

Detector Prototype

- 10x10cm scintillator screen
- 16 steel straws, 16 glass rods
- On a movable stage
 - Vertical, horizontal movement
 - Rotates around vertical axis
- Positioned just before beam dump

Calibration Measurements

Cherenkov Data

- Measurements fully parasitic to E320
- Calibration measurements done without strong field QED interactions
- SiPM response (right)
- Main beam spot measurable
- Unstable beam conditions

Compton Spectrum Measurements

Scintillating Screen Data

Summary

- Strong-Field QED presents a realistic opportunity to measure non-linearities in QED
- LUXE aims to study the transition into this regime
 - → Needs robust detectors to measure large dynamic range of particle numbers
- Electron Detection System: Scintillating screen with segmented Cherenkov detector
- Prototype tested with E320 experiment at FACET-II
- Encouraging first results
 - Main beam measurable with Cherenkov detector
 - Compton spectrum visible on scintillating screen

DESY. Page 13

Backup

Page 14

Measurements

Simulations

