Quality Control of the Tileboards for the High Granularity Calorimeter upgrade of the CMS experiment

Anurag Sritharan on behalf of the DESY HGCAL team

DPG Göttingen (T 96.1 - Detector VII: Calorimeters)

04/04/2025

Introduction

- The High-Luminosity Large Hadron Collider (HL-LHC) aims to increase the luminosity of the current LHC by a factor of ~10.
- Increased pileup and radiation. Calls for upgrade of current detectors
- CMS will be upgrading its endcap calorimeter (among other sub-systems) for HL-LHC with the new High Granularity Calorimeter (HGCAL)
- Worldwide collaboration between different universities and countries.
- HGCAL is a 5d imaging calorimeter (3d + Time + Energy)
- Consists of both an electromagnetic and hadronic calorimeter
- 2 different technologies are used in HGCAL
 - Silicon
 - Scintillator/SiPM-on-tile technology

Why Scintillator technology

- Adapted and benefited from vast experience and R&D done for the Calice collaboration
- Different radiation rates throughout the endcap regions of the calorimeter
- Scintillator technology used towards the back where lower radiation doses are expected
- Allows reduction of overall costs
- 16 scintillator layers, ~4000 boards and ~280,000 channels

SiPM-on-Tile Technology

- The scintillator tiles are trapezoidal (considering the geometry of the end-cap region) shaped plastic wrapped in reflective foil.
- Optically linked to silicon photo multipliers (SiPM) making them SiPM-on-tile.

SiPMs consists of thousands of single photon avalanche diodes (SPAD) working in Geiger-Mode

- Signals are sent to the HGCROC
 (High granularity calorimeter read out chip) for signal amplification and digitization before being sent out to the backend.
- HGCROC has 72 channels and there are 1 or 2 chips per board.
- Output => ToA and (ADC or ToT)

Small aside: Jargon

- Tileboard = PCB + electronics
- Tilemodule = Tileboard + tiles
- DESY is one of 2 assembly centers for the tileboards and tilemodules, hence a natural center for testing the assembly.
- The first step in Quality control will be to test the tileboards to make sure the electronics are working before placing the tiles.

Tilemodule

Flow of QC procedures

Goals of Tileboard Quality control (QC)

- Once the tileboard is assembled its functionality needs to be checked
 - Have to check if one can set parameters to the HGCROC and read out the data
- Large number of parameters to tune (~300 per chip)
- Additionally one has to check that the SiPMs can see light using the on board LED.
- With all the data taken one can also perform an initial tuning of the board.
- So the QC test stand also acts as the initial tuning stand.

Example: Pedestal tuning

Towards Automation

- ~4000 boards have to be tested worldwide.
- Designed to be modular, allows extra analysis without having to retake data everytime. Also easy to check analysis by re-running only the steps needed and not the full procedure.
- Should account for most of the expected failures and allow for simple instructions to recover tests so that non-experts can also operate the test stand.
- Should provide reports
 - Detailed to be stored internally:
 - Which channels are bad or sub-standard quality
 - What parameters cannot be tuned properly for said channel
 - Higer level reports for cms database
 - Dead channels
 - If the board passes the QC or not
 - Initial tuning parameters

Building the Code

- Aim: create a comprehensive qc procedure
 - can be used by non-experts.
 - Provides debugging tools for experts
- Requires an efficient and easy to understand set of scripts for developers since this is a worldwide collaboration.
- Ensure modularity of the design and standard coding conventions.

Sequencer

Settings

Optimization of Runtime

- Need to test 150 boards per month. (~ 8 boards per day)
- Target: ~ 30 mins 1 hours per board
- Current benchmark: ~ 1 1.5 hours per board
- Optimization stratagies:
 - Reduce number of events taken
 - Optimizes scans to regions of interest/signal
 - Reduce grid scan size. For example:
 - ToT scan: 8 points to do a linear fit...
 - Can reduce this to 4 points

Summary and the Future

- Basic framework of the QC procedure is now in place
- Further optimization is necessary to meet timing requirements
- Development of GUI in progress:
 - Much more intuitive to understand withouth knowing the code details
 - Much easier to teach new colleagues about the procedure
 - Reduces potential mistakes that may come from using a computer terminal

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Anurag Sritharan

FTX

anurag.sritharan@desy.de

www.desy.de