HCIs in Birmingham

QTFP

- QSFP (quantum sensors for fundamental physics) was launched in 2018
- Good timing with José's RMPs
- QSFP aimed at building a community at the interface of quantum physics and fundamental physics

Background

• Searches for physics beyond the SM

Precision

Background

• Searches for physics beyond the SM

Energy

Science and Technology Facilities Council

Precision

QTFP

- QTFP programme (£40M) launched in 2019
- Stevexit in 2019
- QSNET is one of the 7 projects funded, started March 2021 <u>https://www.ukri.org/news/quantum-projects-launched-to-solve-the-universes-mysteries/</u>

The QSNET project

Search for variations of fundamental constants of the Standard Model using a <u>network of clocks</u>

- A unique network of clocks chosen for their different sensitivities to variations of α and μ

+ international partners

• The clocks will be linked, essential to do clock-clock comparisons

The QSNET project

Search for variations of fundamental constants of the Standard Model using a <u>network of clocks</u>

• A unique network of clocks chosen for their different sensitivities to variations of α and μ

• The clocks will be linked, essential to do clock-clock comparisons

The QSNET project

Search for variations of fundamental constants of the Standard Model using a <u>network of clocks</u>

- A unique network of clocks chosen for their different sensitivities to variations of α and μ

• The clocks will be linked, essential to do clock-clock comparisons

The network approach

- Optimally exploit existing expertise. No single institution has the range of expertise required to run a sufficiently large and diverse set of clocks
- Sensors with similar sensitivities and different systematics are necessary to confirm any measurements and reject false positives

- Networks enable probing of space-time correlations
- The possibility of detecting transient events such as topological defects in dark matter fields or oscillations of dark matter
- A new versatile and expandable national infrastructure with possible further applications in and beyond fundamental physics.

Phenomenology

• Coupling of "dark sector" scalar fields with standard matter [EPJ QT 9, 12 (2022)]:

$$\mathcal{L}_{scalar} \supset \frac{\phi^n}{\Lambda_{\gamma}^n} F_{\mu\nu} F^{\mu\nu} - \sum_f \frac{\phi^n}{\Lambda_f^n} m_f \bar{f} f$$

 Λ_{γ}^{n} alter the fine structure constant α , Λ_{f}^{n} the fermionic masses -> manifest as effective variations of fundamental constants

- Scalar dark matter models
- Axion models
- Quintessence-like models (dark energy)
- Kaluza-Klein models/moduli models
- Dilaton field models

Example: scalar dark matter

Quadratic

11

Other tests [EPJ QT 9, 12 (2022)]

Solitons

- Topological solitons are made up of one or more fields that acquire stability due to the presence of two or more vacua
- transient events, network is needed
- Violation of fundamental symmetries (Lorentz invariance)
 - Lorentz-violating effects may exist and be detectable in experiments with exceptional sensitivity (Cf)
- Grand unification theories
 - QSNET is sensitive both to variations of α and μ , can discriminate between GUTs: $\dot{\mu}/\mu = R \dot{\alpha}/\alpha$, with R strongly model dependent
- Quantum gravity
 - If light scalar field is detected, coupling operators between dark and standard matter are not generated by quantum gravity

Our results

NPL optical clock measurements

Frequency ratios between NPL's optical clocks and Cs fountain have allowed limits to be placed on variations in the fine structure constant, α and the proton-to-electron mass ratio, μ .

During QSNET, we have:

- Improved the stability, accuracy and automation of the optical clocks -> now the most accurate clock in Europe!
- Carried out several month-long measurement campaigns to search for variations in fundamental constants
- Worked with the theory team at Sussex to interpret the results for fundamental physics, e.g.

New data from NPL (red and pink lines) improved the constraint on the coupling strength between dark matter and photons by an order of magnitude compared to any previous measurements

N. Sherrill et al., New J. Phys. 25 093012 (2023)

Theory at Sussex

- More than 20 published papers [qsnet.org.uk/publications]:
 - We have proposed a new framework to discuss new physics effects in clocks using effective field theory methods.
 - We have emphasized that one can obtain model independent bounds.
 - We have obtained limits for the case of dark matter and reconsidered the framework of grand unified theory.
 - Cross-fertilization of ideas, besides exciting results direct relevant to clocks
 - we made progress on dark matter deriving some theoretical bounds on their masses and in quantum gravity with some applications to the information paradox of black holes and their thermodynamics (in particular showing that they have not only a temperature but also a pressure).
 - The world, including our universe and black holes, is really quantum. The notation of macroscopic superposition is absolutely crucial in our resolution of the Hawking paradox.

N₂⁺ clock at Sussex

At Sussex we are building a clock system based on a vibrational transition in a trapped molecular nitrogen ion, using a calcium ion for cooling and read out.

As part of QSNET, we have:

Set-up spectroscopy lasers (locked to ULE cavity)

Towards a molecular lattice clock at Imperial

Ultracold CaF molecules trapped in an optical lattice

Raman laser system with a 1 Hz linewidth

Towards Cf HCI clocks at Bham

- Compact Electron Beam Ion trap (1st in UK) []
- Ion optics
- Ultra-low vibration
 cryogenic vacuum
- Cryogenic Paul trap
 [PIB]
- Laser system
- Cf samples
- Laser cooled Ca+ Coulomb crystals

Our promises

No.	Description	RAG Rating		Lead	
		Previous	Current		
S1	New constraints on $\Delta\mu/\mu$ on timescales from 10- 1000 s, targeting 4x10 ⁻¹⁵ at 1000 s	Complet ed	Comple te	NPL	
S2	Measure $\Delta \alpha / \alpha$ on fast timescales targeting 1x10 ⁻¹⁷ at 1000 s, exceeding current state- of-the-art sensitivity	Complet ed	Comple te	NPL	
S3	or-tne-art sensitivity a Quantify impact of the new limits on unified models and dark matter models b Derive limits and exclusion plots for dark matter models with multiple components c derive an EFT framework to study new ultra light fields with clocks enabling the study of diverse phenomena such as e.g. ultra-light wavy dark matter, dark energy, extra dimensions or transient phenomena such as cosmic strings or domain walls d Comprehensive study to investigate the overlap in the parameter space for ultralight experiments such as MAGIS, AION, EDGE, and clocks as well as fifth forces searches e Investigation of the possibility to discriminate between models should a signal be found. For example, can the mass, spin and interactions of	Complet ed	Comple te	Sussex	
	the new light particle be reconstructed?				
S4	Provide first tests of model-independent parametrization for	Complet ed	Comple ted	Sussex	

	S4	Provide first tests of model-independent parametrization for variations of fundamental constants on data currently available, and compare with previous methods	Complet ed	Comple ted	Sussex
	T1	Investigate sources of uncontrolled frequency offsets that lead to variations in frequency ratios	Green	Comple ted	NPL
	T2	N ₂ + quantum spectroscopy	Amber	Comple ted	Sussex
	Т3	Realization of a Cf ¹⁵⁺ cEBIT	Complet ed	Comple ted	Birmingh am
	Τ4	CaF molecules in optical lattices and identification of the clock transition	Green	Comple ted	Imperial
<	T5	Spectroscopy and identification of the clock line in hot Cf15+	Green	Green	Birmingh am
	T6	N ₂ ⁺ transition measured	Amber	Amber	Sussex

QSNET	Realisation of a laser	Complet	Comple	Birmingh
++ 1	system for cooling and	ed	ted	am
	imaging Ca+ ions			

ン

QSNET	Trapping and cooling	Complet	Comple	Birmingh
++ 2	Ca+ ions	ed	ted	am
QSNET	Realisation of a Ca+	Complet	Comple	Birmingh
++ 3	Coulomb crystal	ed	ted	am
QSNET ++4	Realisation of a Raman laser system for CaF	Complet ed	Comple ted	Imperial
QSNET ++5	Study of the CaF clock transition and coherence time	Amber	Amber	Imperial

What's next

- STFC has announced a call to open in mid March (!)
- Similar amount of funding expected, but currently there is no funding allocated (!!)
- Second phase expected to start in October 2025

- ECFA DRD 5 (Steve knows more)
- FOREST pan-European fibre network