The compact FFGS (or CFFGIVUVS)

Spectral image (untreated)

CCD spectral image

Resolving power

Calibration lines of O and N

Spectral simulations with CHIANTI compared with data

VUV spectra energy dependence

The spectra are monitored as the electron beam energy is varied in steps of 3 eV shown together in a composite image.

Xenon for microlithography

Excitation energy dependency

GIS 1 spectrum of an off-limb quiet sun observation (May 4th 1997), with corresponding synthetic spectra overlaid. These types of spectra have been mainly used for the first order internal and cross-detector calibration.

G. Del Zanna, B. J. I. Bromage, E. Landi, and M. Landini, A&A 379, 708 (2001)

The new flat field grating spectrometer (Baumann 2008)

0.01

19

20

21

Diploma thesis Thomas Baumann:

- Hitachi gratings
- Range 25-200 eV
- Resolving power 1500
- CCD at -95°C, 2048x2048 pixels

23

Wavelength (nm)

24

25

26

27

22

The new flat field grating spectrometer (Baumann 2008)

The new flat field grating spectrometer (Baumann 2008)

Focal plane of flat field grating spectrometer (Baumann 2008)

Horizontale Fokalkurven von Gitter II für unterschiedliche Einfallswinkel . Der kleine Graph zeigt den vergrößerten Bereich um 87 grad Fokalkurven von Gitter II für unterschiedliche Quellendistanzen r

Selectivity of charge states with electron beam energy

Selectivity of charge states with electron beam energy

Reproducibility and error bars in the XUV

Abbildung 5.14: Wellenlänge des $1s^2 2s S_{1/2} - 1s^2 2p P_{3/2}$ Übergangs in Fe XXIV aller 50 Messungen zusammen mit ihrem statistisch gewichteten Mittelwert und dessen 68% Vertrauensintervall.

Reproducibility and error bars in the XUV

Referenz	Wellenlänge λ (nm)	Fehler $\Delta\lambda$ (nm)	Methode
K. Dere 1978 [41]	19.203	0.003	Sonneneruption
E. Hinnov 1979 [42]	19.205	0.003	Tokamak
E. Hinnov 1989 <i>et al.</i> [43]	19.201	0.002	Tokamak
R. J. Knize 1991 [44]	19.2046	0.0009	Tokamak
J. Reader 1994 et al. [37]	19.2028	0.0005	Tokamak
S. W. Epp 2007 [10]	19.2017	0.0012	EBIT
S. A. Blundell 1993 [45]	19.2021		Theorie
M. H. Chen 1995 [46]	19.205		Theorie
diese Arbeit	19.2037	0.001	EBIT
K. P. Dere 1978 [41]	25.511	0.003	Sonneneruption
E. Hinnov 1979 [42]	25.511	0.003	Tokamak
E. Hinnov 1989 <i>et al.</i> [43]	25.509	0.001	Tokamak
R. J. Knize 1991 [44]	25.511	0.001	Tokamak
J. Reader 1994 et al. [37]	25.5113	0.0005	Tokamak
S. W. Epp 2007 [10]	25.5118	0.0002	EBIT
S. A. Blundell 1993 [45]	25.5101		Theorie
M. H. Chen 1995 [46]	25.5111		Theorie
diese Arbeit	25.5115	0.0007	EBIT

Tabelle 5.4: Literaturwerte der beiden Fe XXIV Linien. Zur Messung dieser Linien wurden unterschiedliche Methoden angewandt: Spektrale Untersuchungen von Sonneneruptionen, Spektroskopie an Tokamak Plasmen, Spektroskopie an EBIT Plasmen und theoretische Berechnungen. Hinode ("sunrise") is a solar space telescope mission launched in 2006 (Japan with US and UK partners) aiming at investigating the Sun's corona

Hinode ("sunrise") is a solar space telescope mission launched in 2006 (Japan with US and UK partners) aiming at investigating the Sun's corona

Reproducibility and error bars in the XUV

Ion	Wellenlänge	Position (Pixel)	Gesamtfehler
Ne VI	$11,\!992\mathrm{nm}$	2059, 2(2)	$0,\!005\mathrm{nm}$
Ne V	$11,\!901\mathrm{nm}$	2029, 12(9)	$0,\!005\mathrm{nm}$
Ne VII	$11,\!669\mathrm{nm}$	$1963,\!4(1)$	$0,\!005\mathrm{nm}$
Ne VII	$10,\!61\mathrm{nm}$	1649,76(1)	$0,\!005\mathrm{nm}$
Ne VIII	$10{,}31\mathrm{nm}$	$1553,\!58(9)$	$0,\!005\mathrm{nm}$
Ne VIII	$9{,}826\mathrm{nm}$	$1403,\!58(8)$	$0,\!005\mathrm{nm}$
Ne VIII	$9{,}75\mathrm{nm}$	$1381,\!29(7)$	$0,\!005\mathrm{nm}$
Ne VII	$9{,}156\mathrm{nm}$	1190, 9(2)	$0,\!005\mathrm{nm}$
Ne VIII	$8{,}809\mathrm{nm}$	$1077,\!63(7)$	$0,\!005\mathrm{nm}$
Ne VII	$7{,}577\mathrm{nm}$	$1657,\!9(1)$	$0,\!005\mathrm{nm}$
Ne VIII	$7{,}356\mathrm{nm}$	$578,\! 6(2)$	$0,\!005\mathrm{nm}$
Ne VII	$6{,}89\mathrm{nm}$	412,44(2)	$0,\!005\mathrm{nm}$
Ne VIII	$6{,}738\mathrm{nm}$	$355,\!4(2)$	$0,\!005\mathrm{nm}$
Ne VIII	$6{,}589\mathrm{nm}$	$300,\!4(2)$	$0,\!005\mathrm{nm}$
Ne VIII	$6{,}079\mathrm{nm}$	$104,\!6(5)$	$0,\!005\mathrm{nm}$

Reproducibility and error bars in the XUV

		Diese Arbeit	[185]	[186]
Ion	$\ddot{\mathrm{U}}\mathrm{bergang}$	λ (nm)	λ (nm)	λ (nm)
Si VIII	$3d^2F_{5/2} \rightarrow 2p^{3} {}^4S_{3/2}$	6,106(3)		6,1032
Si VIII	$3d^2F_{7/2} \rightarrow 2p^{3\ 2}D_{5/2}$	6,195(3)		6,1792
Si VI	.,,_	6,490(3)		
Si VI	$5d^2 D_{5/2} \rightarrow 2p^{52} P_{3/2}$	$6,\!68(3)$		6,6772 (NIST)
Si VII	$3d{}^5D_3 ightarrow 2p^4{}^3P_1$	6,835(2)		6,8148
Si VI		6,932(2)		
Si VII	$3d {}^3F_2 \to 2p^{43}P_2$	6,990(2)		6,9664
Si VII	$3d^{3}F_{3} \rightarrow 2p^{4} {}^{1}D_{2}$	7,014(2)		7,0072
Si VII	$3d{}^3G_3 \to 2p^{41}D_2$	7,136(2)		$7,\!1384$
Si VII	$3d \rightarrow 2p^4$	7,324(2)		$7,\!312$
Si VI	$3d ightarrow 2p^5$	7,759(2)		$7{,}7429 \ / \ 7{,}7718$
Si V	$5d {}^1P_1^o \to 2p^{6} {}^1S_0$	8,055(2)	8,054(2)	
Si VI	$3d ightarrow 2p^5$	8,067(2)		$8{,}0449 \ / \ 8{,}0725$
Si V	$5d {}^{3}D_{1}^{o} \rightarrow 2p^{6} {}^{1}S_{0}$	8,098(2)	8,078(1)	
Si VII	$3s \rightarrow 2p^4$	8,174(2)		$8{,}1617 \ / \ 8{,}1845$
Si VI	$3d {}^2D_{5/2} ightarrow 2p^{5} {}^2P_{3/2}$	8,328(2)		8,3128
Si VI	$3d^{2}D_{3/2} \rightarrow 2p^{5} {}^{2}P_{1/2}$	8,378(2)		8,3611
Si VII	$3s 1D_2 \rightarrow 2p^{4 \ 1}D_2$	8,410(2)		8,4082
Si V	$4d {}^1P_1^o \to 2p^{6} {}^1S_0$	8,526(2)	8,5177(8)	
Si V	$4d{}^{3}D_{1}^{o} \rightarrow 2p^{6}{}^{1}S_{0}$	8,57(2)	8,558(1)	
Si VII		8,697(2)		
Si VII	$3s{}^{3}P_{2} \rightarrow 2p^{53}P_{2}$	8,805(2)		8,8008
Si VI		9,618(2)		
Si V	$3d {}^1P_1^o \to 2p^{6} {}^1S_0$	9,646(2)	$9,\!6438(7)$	
Si V	$3d {}^{3}D_{1}^{o} \to 2p^{6} {}^{1}S_{0}$	9,726(2)	9,715(2)	
Si V	$3d {}^{3}P_{1}^{o} \to 2p^{6} {}^{1}S_{0}$	9,830(5)		
Si VI		9,952(2)		
Si VI		10,092(2)		
Si V	$3s {}^{1}P_{1}^{o} \rightarrow 2p^{6} {}^{1}S_{0}$	11,789(2)	11,7846(6)	
Si V	$3s {}^{3}P_{0}^{o} \to 2p^{6} {}^{1}S_{0}$	11,873(2)		
Si V	$3s {}^{3}P_{1}^{o} \to 2p^{6} {}^{1}S_{0}$	$11,\!903(3)$	11,8950(7)	
Si V	$3s {}^{3}P_{2}^{o} \to 2p^{6} {}^{1}S_{0}$	11,938(3)	11,907(9)	

Tabelle 4.2: Es sind die Pixelpositionen der Linien, ihre Fehler Δ Pixel, die au. der NIST Datenbank [17] korrespondierenden Wellenlängen λ und deren Fehler $\Delta\lambda$, sowie der Ladungszustand in der Tabelle eingetragen.

Pixel	$\Delta Pixel$	λ (nm)	$\Delta\lambda \ (\mathrm{nm})$	Ladungszustand
$43,\!539$	0,029	$17,\!453$	0,007	Fe^{9+}
61,765	$0,\!107$	$17,\!527$	0,007	Fe^{9+}
$108,\!380$	0,058	17,724	0,007	Fe^{9+}
336,169	0,035	$18,\!688$	0,007	Fe^{11+}
368,306	0,031	18,822	0,007	Fe^{10+}
455,160	0,080	19,203	0,007	Fe^{23+}
464,759	0,399	19,239	0,007	Fe^{11+}
490,284	0,079	19,351	0,007	Fe^{11+}
$527,\!308$	0,030	19,512	0,007	Fe^{11+}
724,813	0,083	20,383	0,007	Fe^{12+}
1064,434	$0,\!155$	21,914	0,007	Fe^{13+}
1760,207	$0,\!195$	$25,\!195$	0,007	Fe^{12+}
1824,212	0,202	25,511	0,007	Fe^{23+}
1870,544	$0,\!116$	25,726	0,007	Fe^{9+}
2021,824	0,221	26,479	$0,\!007$	Fe^{13+}

Julia Jäger

Julia Jäger

Longitudinal cut through the FLASH-EBIT

Pm-like (61 electrons) isoelectronic sequence

Wavelength (nm)

Isoelectronic sequence studied in detail to find analogies

Studies of Fe HCI with charge-state resolution

Gu et al., Astrophys. J. 696, 2275 (2009)

Understanding optical and EUV spectra of Sn ions

Understanding Sn spectra

Understanding Sn spectra

F. Torretti, ARCNL, PRA (2017)

