
1.6 Objects and Classes

1.6 What is an Object?

1.7 Objects and Classes

1.8 Object Interface, Class Inheritance, Polymorphism

1.9 Summary

Objects and Classes 2

1.6 What is an Object?

Identity (which one is it):
Address or instance ID

State (what happened before):
Internal variables

Functions
(Methods)

Data

An object has:
interface
behaviour
identity
state

Interface (how to use it):
Method signatures

Behaviour (what it does):
Algorithms in methods

Objects and Classes 3

1.6 Object Interface

Create an object (constructors)
from nothing (default)
from another object (copy)
from 3 coordinates

A dot product

A cross product
And possibly many other
member functions

The object interface is given
by its member functions described
by the objects class

Magnitude

How to
use it

Objects and Classes 4

1.6 Object Behaviour

class ThreeVector {

 public:

 ThreeVector() { x=0; y=0; z=0 };

 ...

 double dot(const ThreeVector &) const;
 ThreeVector cross(const ThreeVector &) const;
 double mag() const;

 ...

 private:

 double x,y,z;

}

Default constructor sets to 0

Dot and cross are
unambigious

Magnitude, user probably
expects 0 or a positive number

const means state of object does
not change (vector remains the same)
when this function is used

What it
doe s

Objects and Classes 5

1.6 Object Identity

...

ThreeVector a;
ThreeVector b(1.0,2.0,3.0);

...

ThreeVector c(a);
ThreeVector d= a+b;

...

ThreeVector* e= new ThreeVector();
ThreeVector* f= &a;
ThreeVector& g= a;

...

double md= d.mag();
double mf= f->mag();
double mg= g.mag();

...

There can be many objects
(instances) of a given class:

Symbolically:
a ≠ b ≠ c ≠ d ≠ e
but f = g = a

Pointer (*): Address of memory
where object is stored; can
be changed to point to
another object

Reference (&): Different name
for identical object

Which one
is it

Objects and Classes 6

1.6 Object State

The internal state
of an object is given
by its data members

Different objects of the same class have
different identity
different state
possibly different behaviour
but always the same interface

What happened
before

Objects and Classes 7

1.6 Object Interactions

Objects interact through their interfaces only

Objects manipulate their
own data but get access to
other objects data through
interfaces only

Most basic: get() / set(...) member
functions, but usually better to
provide “value added services”, e.g.

- fetch data from storage
- perform an algorithm

Objects and Classes 8

1.6 Message Passing

Objects pass messages to each other

Objects send messages to
other objects and react
on messages

a says to b “getY” and receives a value for Y in return

Objects and Classes 9

1.6 Objects keep data hidden

Stop others from depending on the class data model
Provide algorithms which use the data instead
Can give direct and efficient access to data in controlled way

→ pass (const) references or pointers
Can change class data model without affecting other objects
Can replace member data e.g. by database lookup

Objects and Classes 10

1.6 Private Object Data
● Object state a priori unknown
● The object knows and reacts accordingly
● Decisions (program flow control)

encapsulated
● User code not dependent on algorithm

internals, only object behaviour
● Object state can be queried (when the object

allows it)

Objects and Classes 11

1.6 Object
Construction/Destruction

Construction:
Create object at run-time
Initialise variables
Allocate resources
→ Constructor member functions

Destruction:
Destroy object at run-time
Deallocate (free) resources
→ Destructor member function

Objects and Classes 12

1.6 Object Lifetime

A* myA= new A();
...
delete myA;

{
 A myA();
 ...
}

Allocation creates new
instance “on the heap”

constructor called
Must free resources by hand

destructor called

Declaration creates new
instance “on the stack”

constructor called
Object will be deleted
automatically when scope
is left

destructor called

Or the language provides
garbage collection (Java, Perl, Python, Julia)

Objects and Classes 13

1.6 Objects Summary
● Object: interface, behaviour, identity, state
● Objects collaborate

– send messages to each other
– use each other to obtain results
– provide data and “value-added services”

● Objects control access to their data
– data private, state hidden
– access through interface

● Objects have lifetime

Objects and Classes 14

1.7 Objects and Classes

● Objects are described by classes
– blueprint for construction of objects
– OO program code resides in classes

● Objects have type specified by their class
● Classes can inherit from each other

– Special relation between corresponding objects
● Object interfaces can be separated from

object behaviour and state

Objects and Classes 15

1.7 Classes describe Objects
● Class code completely specifies an object

– interface (member function signature)
– behaviour (member function code)
– inheritance and friendship relations

● Object creation and state changes happen at
run-time

● In OOP most code resides in the class
member functions (methods)
– objects collaborate to perform a task

Objects and Classes 16

1.7 Classes = Types
● Class is new programmer-defined data type
● Objects have type

– extension of bool, int, float, etc
– e.g. type complex didn't exist in C/C++, but can

construct in C++ data type complex as class
● ThreeVector is a new data type

– combines 3 floats/doubles with interface and
behaviour

– can define operators +, -, *, / etc.

Objects and Classes 17

1.7 Class Inheritance
● Objects are described by classes, i.e. code
● Classes can build upon other classes

– reuse (include) an already existing class to
define a new class

– add new member functions and member data
– replace (overload) inherited member functions
– interface of new class must be compatible
– class has own type and type(s) of parent(s)

Objects and Classes 18

1.7 Classes Summary

● Classes are blueprints for construction of
objects

● Class = programmer defined data type of
corresponding objects

● Classes can inherit (build upon) other
classes

Objects and Classes 19

1.8 Separation of Interfaces
● Interface described by class A with no (or

little) behaviour
– member function signatures
– perhaps not possible to create objects of type A

● Now different subclasses (B, C, D) inherit
from A and provide different behaviour
– can create objects of type B, C or D with identical

interfaces but different behaviour
– code written using class A can use objects of

type B, C or D

Objects and Classes 20

1.8 Dynamic Polymorphism

Objects of type A are actually of type B, C or D
Objects of type A can take many forms, they are polymorph

Code written in terms of A will not notice the difference
but will produce different results

Can separate generic algorithms from specialisations
No explicit decisions in algorithms (if/then/else or switch/case)

Objects and Classes 21

1.8 Dynamic Polymorphism

int main () {
 vector<A*> va;
 va.push_back(new B());
 va.push_back(new C());
 va.push_back(new D());
 for(int i=0; i<va.size(); i++){
 va[i]->doSomething();
 }
}

Objects and Classes 22

1.8 Interface Abstraction
● Common interface of group of objects is an

abstraction (abstract class, interface class)
– find commonality between related objects
– express commonality formally using interfaces

● Clients (other objects) depend on the
abstract interface, not details of objects
– Polymorphic objects can be substituted

● Abstract arguments and return values
– or clients depend on details again

Objects and Classes 23

1.8 Mechanics of Dynamic
Polymorphism

Virtual function table with function pointers
in strongly typed languages, e.g. C++, Java

A B C
1 doSomething 0x3BA5 0x8BF1
2 display 0x0BF3 0x2CD5
3 cleanup 0x6437 0x7883

B::doSomething C::doSomething
B::display C::display
B::cleanup C::cleanup

Lookup by name in hash-tables in dynamically typed
languages (Perl, Python, Smalltalk)

Fast and efficient!

Compile and link
time optimisations!

Objects and Classes 24

1.8 Static Polymorphism
(Templates)

Template <class T> class U {
 public:
 void execute() {
 T t;
 t.init();
 t.run();
 t.finish();
 }
}

#include “B.hh”
#include “U.hh”
int main {
 U ub;
 ub.execute();
}

Class B {
 public:
 void init();
 void run();
 void finish();
}

Template class U contains generic algorithm
Class B implements
No direct dependence between U and B, but
interface must match for U to compile

Can't change types at run-time
Using typed collections difficult

→ don't use static polymorphism unless proven need

Objects and Classes 25

1.8 Interfaces Summary
● Interface can be separated from object

– Abstract (interface) classes
● Find commonality between related objects

– Abstraction is the key
● Clients depend on abstractions (interfaces),

not on specific object details
● Dynamic polymorphism: fast+efficient

– Static polymorphism (templates)
● Polymorphic objects replace code branches

Objects and Classes 26

1.8 Inheritance SA/SD vs OOP

SA/SD (procedural):

Inherit for functionality

We need some function, it
exists in class A → inherit
from A in B and add some more
functionality

OOP:

Inherit for interface

There are some common
properties between several
objects → define a common
interface and make the objects
inherit from this interface

Objects and Classes 27

1.8 Tools for OOP

● A (graphical) modelling language
– allows to describe systems in terms of classes,

objects and their interactions before coding
● A programming language

– classes (data+functions) and data hiding
– class inheritance and object polymorphism

● Not required for OOP (but useful)
– templates, lots of convenient operators

Objects and Classes 28

1.9 Summary
● Software can be a complex system

– object and class views
– hierarchy and abstractions

● Object model
– Abstraction, encapsulation, modularity,

hierarchy, type
– objects have interface, behaviour, state, identity

● Class inheritance and object polymorphism
– build hierarchies of abstractions

	objcls
	oocon 7
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	messp
	oocon 17
	privdata
	objctor
	cdtor
	obj_sum
	classes
	obj-cls
	oocon 14
	oocon 15
	cls_sum
	oocon 18
	oocon 19
	polym
	absstract
	Slide 23
	tmpl
	intf_summ
	Slide 26
	oocon 20
	summ

